State-of-the-Art Reviews
Apr 6, 2022

The Sustainable Utilization of Coal Gangue in Geotechnical and Geoenvironmental Applications

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26, Issue 3

Abstract

Among coal mining-related wastes, coal gangue (CG) is the heterogeneous waste generated during the mineral processing or coal washing phase of coal mining. A thorough understanding of environmental concerns associated with the current model of CG utilization and potential future application is gaining paramount importance. Though previous review articles on CG have presented the environmental concerns and current utilization of CG, an appraisal on the factors affecting its mechanical properties and feasibility of CG as a potential geotechnical material has not been taken into consideration. An attempt is made here to present the different issues associated with the disposal of CG and highlight the potential benefits of its utilization. The physical, chemical, mineralogical, geotechnical, environmental (trace metal mobilization and life-cycle assessment) characteristics of CG are comprehensively evaluated to gauge its potential in promoting sustainable development. This review article also provides insights into CG’s potential applications including its use as a subgrade and subbase material in pavements, landfill liner material, and filter material for hydraulic structures. The sustainability benefits attainable through CG utilization in geotechnical and geoenvironmental applications are also highlighted.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This project was financially supported by the National Institute of Technology, Warangal, India, under “Research Seed Grant No. P1015” and the Ministry of Education (formerly known as the Ministry of Human Resource and Development), Government of India. The authors thank the reviewers for their constructive comments that helped the cause of the manuscript.

References

Abreu, D. G., I. Jefferson, P. A. Braithwaite, and D. N. Chapman. 2012. “Why is sustainability important in geotechnical engineering?” In GeoCongress 2008: Geosustainability and Geohazard Mitigation, Geotechnical Special Publication 178, edited by K. R. Reddy, M. V. Khire, and A. N. Alshawabkeh, 821–828. Reston, VA: ASCE.
Akcil, A., and S. Koldas. 2006. “Acid mine drainage (AMD): Causes, treatment and case studies.” J. Cleaner Prod. 14 (12): 1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006.
Anastasiou, E. K., A. Liapis, and I. Papayianni. 2015. “Comparative life cycle assessment of concrete road pavements using industrial by-products as alternative materials.” Resour. Conserv. Recycl. 101: 1–8. https://doi.org/10.1016/j.resconrec.2015.05.009.
Ashfaq, M., M. Heeralal, and A. A. B. Moghal. 2020a. “Characterisation studies on coal gangue for sustainable geotechnics.” Innovative Infrastruct. Solutions 5 (1): 15. https://doi.org/10.1007/s41062-020-0267-3.
Ashfaq, M., M. Heeralal, and A. A. B. Moghal. 2020b. “Effect of coal gangue particle size on its leaching characteristics.” In Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics, Geotechnical Special Publication 319, edited by J. P. Hambleton, R. Makhnenko, and A. S. Budge, 107–114. Reston, VA: ASCE.
Ashfaq, M., M. Heeralal, and A. A. B. Moghal. 2020c. “Characterization of heavy metals from coal gangue.” Vol. 88 of Problematic soils and geoenvironmental concerns. Lecture Notes in Civil Engineering, edited by M. L. Gali and P. R. Rao, 81–86. Singapore: Springer.
Ashfaq, M., M. Heeralal, and A. A. B. Moghal. 2020d. “Static and dynamic leaching studies on coal gangue.” Vol. 89 of Sustainable environmental geotechnics. Lecture Notes in Civil Engineering, edited by K. R. Reddy, A. K. Agnihotri, Y. Yukselen-Aksoy, B. K. Dubey, A. Bansal, 261–270. Cham, Switzerland: Springer.
Ashfaq, M., M. Heeralal, and A. A. B. Moghal. 2021a. “Utilization of coal gangue for earthworks: Sustainability perspective.” Vol. 144 of Advances in sustainable construction and resource management. Lecture Notes in Civil Engineering, edited by H. Hazarika, G. S. P. Madabhushi, K. Yasuhara, and D. T Bergado, 203–218. Singapore: Springer.
Ashfaq, M., M. Heeralal, and A. A. B. Moghal. 2021b. “Influence of lime on the unconfined compressive strength of cnoal gangue.” In Vol. 134 of Proc., Indian Geotechnical Conf. 2019. Lecture Notes in Civil Engineering, edited by S. Patel, C. H. Solanki, K. R. Reddy, and S. K. Shukla, 127–133. Singapore: Springer.
Ashfaq, M., M. Heeralal, A. A. B. Moghal, and A. A. B. Moghal. 2021c. “Effect of fines content on the shear behavior of coal gangue.” In IFCEE 2021: Earth Retention, Ground Improvement, and Seepage Control, Geotechnical Special Publication 324, edited by C. El Mohtar, S. Kulesza, T. Baser, and M. D. Venezia, 264–271. Reston, VA: ASCE.
Ashfaq, M., M. Heeralal, A. A. B. Moghal, and V. R. Murthy. 2020e. “Carbon footprint analysis of coal gangue in geotechnical engineering applications.” Indian Geotech. J. 50 (4): 646–654. https://doi.org/10.1007/s40098-019-00389-z.
Ashfaq, M., M. Heeralal, and P. H. P. Reddy. 2019. “A study on strength behavior of alkali-contaminated soils treated with fly ash.” In Recycled waste materials. Lecture Notes in Civil Engineering, edited by A. K. Agnihotri, K. R. Reddy, and A. Bansal, 137–143. Singapore: Springer.
Ashfaq, M., and A. A. B. Moghal. 2021. “Influence of lime and coal gangue on the CBR behavior of expansive soil.” In Advanced geotechnical and structural engineering in the design and performance of sustainable civil infrastructures. sustainable civil infrastructures, edited by J. Neves, B. Zhu, P. Rahardjo, 102–113. Cham, Switzerland: Springer.
Ashfaq, M., A. A. B. Moghal, and B. M. Basha. 2021d. “Reliability-based design optimization of chemically stabilized coal gangue.” J. Test. Eval. 51. https://doi.org/10.1520/JTE20210176.
Baspinar, M. S., I. Demir, and M. Orhan. 2010. “Utilization potential of silica fume in fired clay bricks.” Waste Manage. Res. 28 (2): 149–157. https://doi.org/10.1177/0734242X09104385.
Basu, D., and A. J. Puppala. 2015. “Sustainability: An emerging discipline within geotechnical engineering.” In Geotechnical Engineering for Infrastructure and Development, 2487–2492. London: ICE Publishing.
Bell, F. G. 1996. “Lime stabilization of clay minerals and soils.” Eng. Geol. 42 (4): 223–237. https://doi.org/10.1016/0013-7952(96)00028-2.
Bilgin, N., H. A. Yeprem, S. Arslan, A. Bilgin, E. Günay, and M. Marşoglu. 2012. “Use of waste marble powder in brick industry.” Constr. Build. Mater. 29: 449–457. https://doi.org/10.1016/j.conbuildmat.2011.10.011.
Bizjak, J. F., and S. Lenart. 2018. “Life cycle assessment of a geosynthetic-reinforced soil bridge system – A case study.” Geotext. Geomembr. 46 (5): 543–558. https://doi.org/10.1016/j.geotexmem.2018.04.012.
Bouazza, A., and G. Heerten. 2012. “Geosynthetic applications -sustainability aspects.” In Handbook of geosynthetic engineering, edited by S. K. Shukla, 387–396. London: ICE Publishing.
Cao, D., J. Ji, Q. Liu, Z. He, H. Wang, and Z. You. 2011. “Coal gangue applied to low-volume roads in China.” Transp. Res. Rec. 2204 (1): 258–266. https://doi.org/10.3141/2204-32.
Chau, C., K. Soga, D. Nicholson, and N. O’Riordan. 2012. “Embodied energy as an environmental impact indicator for basement wall construction.” In GeoCongress 2008: Geosustainability and Geohazard Mitigation, Geotechnical Special Publication 178, edited by K. R. Reddy, M. V. Khire, and A. N. Alshawabkeh, 867–874. Reston, VA: ASCE.
Chen, J., and X. Lu. 2018. “Synthesis and characterization of zeolites NaA and NaX from coal gangue.” J. Mater. Cycles Waste Manage. 20 (1): 489–495. https://doi.org/10.1007/s10163-017-0605-5.
Cheng, Y., M. Hongqiang, C. Hongyu, W. Jiaxin, S. Jing, L. Zonghui, and Y. Mingkai. 2018. “Preparation and characterization of coal gangue geopolymers.” Constr. Build. Mater. 187: 318–326. https://doi.org/10.1016/j.conbuildmat.2018.07.220.
Chiaro, G., B. Indraratna, and T. S. M. Ali. 2014. “Predicting the behaviour of coal wash and steel slag mixtures under triaxial conditions.” Can. Geotech. J. 52 (3): 367–373. https://doi.org/10.1139/cgj-2013-0476.
Chiaro, G., B. Indraratna, T. S. M. Ali, and C. Rujikiatkamjorn. 2015. “Optimisation of coal wash–slag blend as a structural fill.” Proc. Inst. Civ. Eng. Ground Improv. 168 (1): 33–44. https://doi.org/10.1680/grim.13.00050.
Chu, Z., X. Wang, Y. Wang, F. Zha, Z. Dong, T. Fan, and X. Xu. 2020. “Influence of coal gangue aided phytostabilization on metal availability and mobility in copper mine tailings.” Environ. Earth Sci. 79 (3): 68. https://doi.org/10.1007/s12665-020-8807-x.
Chuncai, Z., L. Guijian, W. Dun, F. Ting, W. Ruwei, and F. Xiang. 2014. “Mobility behavior and environmental implications of trace elements associated with coal gangue: A case study at the huainan coalfield in China.” Chemosphere 95: 193–199. https://doi.org/10.1016/j.chemosphere.2013.08.065.
Damians, I. P., R. J. Bathurst, E. G. Adroguer, A. Josa, and A. Lloret. 2016. “Sustainability assessment of earth-retaining wall structures.” Environ Geotech. 5 (4): 187–203. https://doi.org/10.1680/jenge.16.00004.
Davies, M. C. R. 1990. “The geotechnical properties of cemented colliery waste for use in land fill.” In Geotechnics of waste fills—Theory and practice, edited by A. Landva and G. D. Knowles. West Conshohocken, PA: ASTM.
DeJong, J., C. Proto, M. Kuo, and M. Gomez. 2014. “Bacteria, biofilms, and invertebrates: The next generation of geotechnical engineers?” In Geo-Congress 2014 Technical Papers: Geo-Characterization and Modeling for Sustainability, Geotechnical Special Publication 234, edited by M. Abu-Farsakh, X. Yu, and L. R. Hoyos, 3959–3968. Reston, VA: ASCE.
Dong, Z., J. Xia, C. Fan, and J. Cao. 2015. “Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar.” Constr. Build. Mater. 100: 63–69. https://doi.org/10.1016/j.conbuildmat.2015.09.050.
Dutta, S., M. B. Nadaf, and J. N. Mandal. 2016. “An overview on the use of waste plastic bottles and fly ash in civil engineering applications.” Procedia Environ. Sci. 35: 681–691. https://doi.org/10.1016/j.proenv.2016.07.067.
Finkelman, R. B. 2004. “Potential health impacts of burning coal beds and waste banks.” Int. J. Coal Geol. 59 (1): 19–24. https://doi.org/10.1016/j.coal.2003.11.002.
Geng, J., M. Zhou, Y. Li, Y. Chen, Y. Han, S. Wan, X. Zhou, and H. Hou. 2017. “Comparison of red mud and coal gangue blended geopolymers synthesized through thermal activation and mechanical grinding preactivation.” Constr. Build. Mater. 153: 185–192. https://doi.org/10.1016/j.conbuildmat.2017.07.045.
Giri, R. K., and K. R. Reddy. 2015. “Sustainability assessment of Two alternate earth-retaining structures.” In IFCEE 2015, Geotechnical Special Publication 256, edited by M. Iskander, M. T. Suleiman, J. B. Anderson, and D. F. Laefer, 2836–2845. Reston, VA: ASCE.
Guo, Y., K. Yan, L. Cui, and F. Cheng. 2016. “Improved extraction of alumina from coal gangue by surface mechanically grinding modification.” Powder Technol. 302: 33–41. https://doi.org/10.1016/j.powtec.2016.08.034.
Gutt, W., and P. J. Nixon. 1979. “Use of waste materials in the construction industry.” Matér. Constr. 12 (4): 255–306. https://doi.org/10.1007/BF02473543.
Haibin, L., and L. Zhenling. 2010. “Recycling utilization patterns of coal mining waste in China.” Resour. Conserv. Recycl. 54 (12): 1331–1340. https://doi.org/10.1016/j.resconrec.2010.05.005.
Han, J. Y., X. Y. Song, and Z. H. Gao. 2012. “Excitation effect of soluble glass on composite system with calcined coal gangue and slag.” Appl. Mech. Mater. 174–177: 30–34. https://doi.org/10.4028/www.scientific.net/AMM.174-177.30.
Harmsel, M. 2016. “Contribution of sand filled geotextile tubes to decrease carbon footprint emissions in building marine structures.” In Coastal Management, 29–38. London: ICE Publishing.
Hausmann, M. R. 1990. “Engineering principles of ground modification.” In Ground Modification Techniques in Waste Management. Proc. of Conf. on Geotechnical Management of Waste and Contamination, edited by M. Thom and M. Marlev, 163–183. New York: McGraw-Hill.
Heitor, A., B. Indraratna, C. I. Kaliboullah, C. Rujikiatkamjorn, and G. W. McIntosh. 2016. “Drained and undrained shear behavior of compacted coal wash.” J. Geotech. Geoenviron. Eng. 142 (5): 04016006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001422.
Heitor, A., B. Indraratna, C. Rujikiatkamjorn, G. Chiaro, and S. M. A. Tasalloti. 2014. “Evaluation of the coal wash and steel furnace slag blends as effective reclamation fill for port expansion.” In Proc., 7th Int. Congress on Environmental Geotechnics, edited by A. Bouazza, S. T. S. Yuan, and B. Brown, 10–14. Melbourne, Australia: Engineers Australia.
Hu, Z. Q., J. T. Kang, X. J. Wei, J. J. Ji, W. J. Wang. 2007. “Experimental research on improvement of reclaimed soil properties and plant production based on different ratios of coal-based mixed materials.” T CSAE 23 (11): 120–124.
Hua, C., G. Zhou, X. Yin, C. Wang, B. Chi, Y. Cao, Y. Wang, Y. Zheng, Z. Cheng, and R. Li. 2018. “Assessment of heavy metal in coal gangue: Distribution, leaching characteristic and potential ecological risk.” Environ. Sci. Pollut. Res. Int. 25 (32): 32321–32331. https://doi.org/10.1007/s11356-018-3118-4.
Huang, G., J. Yongsheng, J. Li, Z. Hou, and Z. Dong. 2018. “Improving strength of calcinated coal gangue geopolymer mortars via increasing calcium content.” Constr. Build. Mater. 166: 760–768. https://doi.org/10.1016/j.conbuildmat.2018.02.005.
Hughes, L., A. Phear, D. Nicholson, H. Pantelidou, K. Soga, P. Guthrie, A. Kidd, and N. Fraser. 2011. “Carbon dioxide from earthworks: A bottom-up approach.” Proc. Inst. Civ. Eng. Civ. Eng. 164 (2): 66–72. https://doi.org/10.1680/cien.2011.164.2.66.
Hunsucker, D. Q., G. W. Sharpe, J. G. Rose, and R. C. Deen. 1987. Road base construction utilizing coal waste materials. Research Rep., UKTRP-87-15. Washington, DC: US Dept. of Transportation. https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1754&context=ktc_researchreports
Indraratna, B. 1994. “Geotechnical characterization of blended coal tailings for construction and rehabilitation work.” Q. J. Eng. Geol. Hydrogeol. 27 (4): 353–361. https://doi.org/10.1144/GSL.QJEGH.1994.027.P4.06.
Indraratna, B., Y. Qi, and A. Heitor. 2018. “Evaluating the properties of mixtures of steel furnace slag, coal wash, and rubber crumbs used as subballast.” J. Mater. Civ. Eng. 30 (1): 04017251. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002108.
Indraratna, B., C. Rujikiatkamjorn, and G. Chiaro. 2012. “Characterization of compacted coal wash as structural fill material.” In GeoCongress 2012: State of the Art and Practice in Geotechnical Engineering, ASCE Geotechnical Special Publication 225, R. D. Hryciw, A. Athanasopoulos-Zekkos, and N. Yesiller, 3826–3834. Reston, VA: ASCE.
Indraratna, B., C. Rujikiatkamjorn, and G. Chiaro. 2013. “Compaction of coal wash as reclamation fill.” In Proc., 18th Southeast Asian Geotechnical Conf. & Inaugural AGSSEA Conf., 165–170. Singapore: Research Publishing Services.
Inui, T., K. Soga, and D. Nicolson. 2011. “Embodied energy and gas emissions of retaining wall structures.” J. Geotech. Geoenviron. Eng. 137 (10): 958–967. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000507.
Jabłońska, B., A. V. Kityk, M. Busch, and P. Huber. 2017. “The structural and surface properties of natural and modified coal gangue.” J. Environ. Manage. 190: 80–90. https://doi.org/10.1016/j.jenvman.2016.12.055.
Jefferis, S. A. 2012. “Moving towards sustainability in geotechnical engineering.” In GeoCongress 2008: Geosustainability and Geohazard Mitigation, ASCE Geotechnical Special Publication 178, edited by K. R. Reddy, M. V. Khire, and A. N. Alshawabkeh, 844–851. Reston, VA: ASCE.
Kaliboullah, C., Ibrahim, B. Indraratna, C. Rujikiatkamjorn, and A. Heitor. 2015. “Evaluation of coalwash as a potential structural fill material for port reclamation.” In 12th Australia New Zealand Conf. on Geomechanics (ANZ 2015): The Changing Face of the Earth – Geomechanics & Human Influence, 1–8. New Zealand: The Conference Company Ltd.
Karfakis, M. G., C. H. Bowman, and E. Topuz. 1996. “Characterization of coal-mine refuse as backfilling material.” Geotech. Geol. Eng. 14 (2): 129–150. https://doi.org/10.1007/BF00430273.
Kettle, R. J. 1983. “The improvement of colliery spoil.” Q. J. Eng. Geol. 16 (3): 221–230. https://doi.org/10.1144/GSL.QJEG.1983.016.03.06.
Kim, J. C., and S. Y. Hong. 2001. “Liquid concentration changes during slag cement hydration by alkali activation.” Cem. Concr. Res. 31 (2): 283–285. https://doi.org/10.1016/S0008-8846(00)00455-5.
Koshy, N., K. Dondrob, L. Hu, Q. Wen, and J. N. Meegoda. 2019. “Synthesis and characterization of geopolymers derived from coal gangue, fly ash and red mud.” Constr. Build. Mater. 206: 287–296. https://doi.org/10.1016/j.conbuildmat.2019.02.076.
Koutsoftas, D. C., and M. L. Kiefer. 1990. “Improvement of mine spoils in southern Illinois.” In Geotechnics of waste fills—Theory and practice, ASTM Special Technical Publication 1070, 153–167. West Conshohocken, PA: ASTM.
Kuenzer, C., C. Hecker, J. Zhang, S. Wessling, and W. Wagner. 2008. “The potential of multidiurnal MODIS thermal band data for coal fire detection.” Int. J. Remote Sens. 29 (3): 923–944. https://doi.org/10.1080/01431160701352147.
La Nauze, R. D., and G. J. Duffy. 1985. “Coal rejects — a wasted resource?” Environ. Geochem. Health 7 (2): 69–79. https://doi.org/10.1007/BF01771341.
Li, C., J. Wan, H. Sun, and L. Li. 2010. “Investigation on the activation of coal gangue by a new compound method.” J. Hazard. Mater. 179 (1): 515–520. https://doi.org/10.1016/j.jhazmat.2010.03.033.
Li, J., and J. Wang. 2019. “Comprehensive utilization and environmental risks of coal gangue: A review.” J. Cleaner Prod. 239: 117946. https://doi.org/10.1016/j.jclepro.2019.117946.
Li, L., G. Long, C. Bai, K. Ma, M. Wang, and S. Zhang. 2020. “Utilization of coal gangue aggregate for railway roadbed construction in practice.” Sustainability 12 (11): 4583. https://doi.org/10.3390/su12114583.
Li, W., L. Chen, T. Zhou, Q. Tang, and T. Zhang. 2011. “Impact of coal gangue on the level of main trace elements in the shallow groundwater of a mine reclamation area.” Min. Sci. Technol. 21 (5): 715–719. https://doi.org/10.1016/j.mstc.2011.03.004.
Liew, M., M. Xiao, and S. Liu. 2021. “Characterization of physical and mineralogical properties of anthracite and bituminous coal tailings.” Int. J. Coal Prep. Util. 41 (9): 645–660. https://doi.org/10.1080/19392699.2018.1503175.
Lin, H., G. Li, Y. Dong, and J. Li. 2017. “Effect of pH on the release of heavy metals from stone coal waste rocks.” Int. J. Miner. Process. 165: 1–7. https://doi.org/10.1016/j.minpro.2017.05.001.
Lingling, X., G. Wei, W. Tao, and Y. Nanru. 2005. “Study on fired bricks with replacing clay by fly ash in high volume ratio.” Constr. Build. Mater. 19 (3): 243–247. https://doi.org/10.1016/j.conbuildmat.2004.05.017.
Liu, X., N. Zhang, Y. Yao, H. Sun, and H. Feng. 2013. “Micro-structural characterization of the hydration products of bauxite-calcination-method red mud- coal gangue based cementitious materials.” J. Hazard. Mater. 262: 428–438. https://doi.org/10.1016/j.jhazmat.2013.08.078.
Lottermoser, B. 2010. Mine wastes: Characterization, treatment and environmental impacts. 3rd ed. Berlin: Springer.
Lu, G. Q., and D. D. Do. 1992. “Physical structure and adsorption properties of coal washery reject.” Fuel 71: 809–813. https://doi.org/10.1016/0016-2361(92)90134-A.
Luo, D., Y. Wang, S. Zhang, D. Niu, and Z. Song. 2020. “Frost resistance of coal gangue aggregate concrete modified by steel fiber and slag powder.” Appl. Sci. 10 (9): 3229. https://doi.org/10.3390/app10093229.
Ma, H., H. Zhu, C. Yi, C. Fan, H. Chen, X. Xu, and T. Wang. 2019. “Preparation and reaction mechanism characterization of alkali-activated coal gangue –slag materials.” Materials 12: 14. https://doi.org/10.3390/ma12142250.
Meng, F., J. Yu, A. Tahmasebi, and Y. Han. 2013. “Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace.” Energy Fuels 27 (6): 2923–2932. https://doi.org/10.1021/ef400411w.
Mitchell, J. K., and K. Soga. 2005. Vol. 3 of Fundamentals of soil behavior. New York: Wiley.
Moghadam, M. J., R. Ajalloeian, and A. Hajiannia. 2019. “Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review.” Constr. Build. Mater. 221: 84–98. https://doi.org/10.1016/j.conbuildmat.2019.06.071.
Moghal, A. A. B. 2017. “State-of-the-art review on the role of fly ashes in geotechnical and geoenvironmental applications.” J. Mater. Civ. Eng. 29 (8): 04017072. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001897.
Moghal, A. A. B., M. Ashfaq, M. A. Al-Shamrani, and A. Al-Mahbashi. 2020. “Effect of heavy metal contamination on the compressibility and strength characteristics of chemically modified semi-arid soils.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020029. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000527.
Okogbue, C. O., and C. L. Ezeajugh. 1991. “The potentials of Nigerian coal-reject as a construction material.” Eng. Geol. 30 (3): 337–356. https://doi.org/10.1016/0013-7952(91)90067-U.
Okagbue, C. O., and O. H. Ochulor. 2007. “The potential of cement-stabilized coal-reject as a construction material.” Bull. Eng. Geol. Environ. 66 (2): 143–151. https://doi.org/10.1007/s10064-005-0033-y.
Ola, S. A. 1977. “The potentials of lime stabilization of lateritic soils.” Eng. Geol. 11 (4): 305–317. https://doi.org/10.1016/0013-7952(77)90036-9.
Padmakumar, G. P., K. Srinivas, K. V. Uday, K. R. Iyer, P. Pathak, S. M. Keshava, and D. N. Singh. 2012. “Characterization of aeolian sands from Indian desert.” Eng. Geol. 139–140: 38–49. https://doi.org/10.1016/j.enggeo.2012.04.005.
Peng, B., X. Li, W. Zhao, and L. Yang. 2018. “Study on the release characteristics of chlorine in coal gangue under leaching conditions of different pH values.” Fuel 217: 427–433. https://doi.org/10.1016/j.fuel.2017.12.123.
Pérez-Villarejo, L., F. A. Corpas-Iglesias, S. Martínez-Martínez, R. Artiaga, and J. Pascual-Cosp. 2012. “Manufacturing new ceramic materials from clay and red mud derived from the aluminium industry.” Constr. Build. Mater. 35: 656–665. https://doi.org/10.1016/j.conbuildmat.2012.04.133.
Phillips, E. K., C. H. Shillaber, J. K. Mitchell, and J. E. Dove. 2016. “Sustainability comparison of a geosynthetic-reinforced soil abutment and a traditionally-founded abutment: A case history.” In Geotechnical and Structural Engineering Congress, edited by C. Y. Chandran and M. I. Hoit, 699–711. Reston, VA: ASCE.
Praticò, F., S. Saride, and A. J. Puppala. 2011. “Comprehensive life-cycle cost analysis for selection of stabilization alternatives for better performance of Low-volume roads.” Transp. Res. Rec. 2204 (1): 120–129. https://doi.org/10.3141/2204-16.
Procarione, J. A. 1988. “Spontaneous combustion tests applied to abandoned coal mine refuse.” Min. Sci. Technol. 6 (2): 147–152. https://doi.org/10.1016/S0167-9031(88)90657-3.
Qian, T., and J. Li. 2015. “Synthesis of Na-A zeolite from coal gangue with the in-situ crystallization technique.” Adv. Powder Technol. 26 (1): 98–104. https://doi.org/10.1016/j.apt.2014.08.010.
Qin, L., and X. Gao. 2019. “Properties of coal gangue-portland cement mixture with carbonation.” Fuel 245: 1–12. https://doi.org/10.1016/j.fuel.2019.02.067.
Querol, X., M. Izquierdo, E. Monfort, E. Alvarez, O. Font, T. Moreno, A. Alastuey, X. Zhuang, W. Lu, and Y. Wang. 2008. “Environmental characterization of burnt coal gangue banks at yangquan, shanxi province, China.” Int. J. Coal Geol. 75 (2): 93–104. https://doi.org/10.1016/j.coal.2008.04.003.
Qureshi, A., C. Maurice, and B. Öhlander. 2016. “Potential of coal mine waste rock for generating acid mine drainage.” J. Geochem. Explor. 160: 44–54. https://doi.org/10.1016/j.gexplo.2015.10.014.
Raja, J., N. Dixon, G. Fowmes, M. Frost, and P. Assinder. 2014. “Comparison of carbon dioxide emissions for two landfill capping layers.” Proc. Inst. Civ. Eng. Eng. Sustainability 167(5): 197–207. https://doi.org/10.1680/ensu.14.00006.
Raymond, A. J., M. A. Pinkse, A. Kendall, and J. T. Dejong. 2017. “Life-cycle assessment of ground improvement alternatives for the treasure island, California, redevelopment.” In Geotechnical Frontiers 2017: Waste Containment, Barriers, Remediation, and Sustainable Geoengineering, Geotechnical Special Publication 276, edited by T. L. Brandon and R. J. Valentine, 345–354. Reston, VA: ASCE.
Ribeiro, J., E. Ferreira da Silva, A. Pinto de Jesus, and D. Flores. 2011. “Petrographic and geochemical characterization of coal waste piles from douro coalfield (NW Portugal).” Int. J. Coal Geol. 87 (3): 226–236. https://doi.org/10.1016/j.coal.2011.06.014.
Rujikiatkamjorn, C., B. Indraratna, and G. Chiaro. 2013. “Compaction of coal wash to optimise its utilisation as water-front reclamation fill.” Geomech. Geoeng. 8 (1): 36–45. https://doi.org/10.1080/17486025.2012.727475.
Salguero, F., J. A. Grande, T. Valente, R. Garrido, M. L. de la Torre, J. C. Fortes, and A. Sánchez. 2014. “Recycling of manganese gangue materials from waste-dumps in the Iberian pyrite belt – Application as filler for concrete production.” Constr. Build. Mater. 54: 363–368. https://doi.org/10.1016/j.conbuildmat.2013.12.082.
Shillaber, C. M., J. K. Mitchell, and J. E. Dove. 2016a. “Energy and carbon assessment of ground improvement works. I: Definitions and background.” J. Geotech. Geoenviron. Eng. 142 (3): 04015083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001410.
Shillaber, C. M., J. K. Mitchell, and J. E. Dove. 2016b. “Energy and carbon assessment of ground improvement works. II: Working model and example.” J. Geotech. Geoenviron. Eng. 142 (3): 04015084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001411.
Shokouhi, A., and D. J. Williams. 2017. “Volume change behaviour of mixtures of coarse coal reject and tailings.” Min. Technol. 126 (3): 163–176. https://doi.org/10.1080/14749009.2016.1277649.
Silva, L. F. O., M. Izquierdo, X. Querol, R. B. Finkelman, M. L. Oliveira, M. Wollenschlager, M. Towler, R. Pérez-López, and F. Macias. 2011. “Leaching of potential hazardous elements of coal cleaning rejects.” Environ. Monit. Assess. 175 (1): 109–126. https://doi.org/10.1007/s10661-010-1497-1.
Silva, R. V., J. de Brito, C. J. Lynn, and R. K. Dhir. 2019. “Environmental impacts of the use of bottom ashes from municipal solid waste incineration: A review.” Resour. Conserv. Recycl. 140: 23–35. https://doi.org/10.1016/j.resconrec.2018.09.011.
Singh, M., and M. Garg. 1999. “Cementitious binder from fly ash and other industrial wastes.” Cem. Concr. Res. 29 (3): 309–314. https://doi.org/10.1016/S0008-8846(98)00210-5.
Sivapullaiah, P. V., and M. A. A. Baig. 2010. “Leachability of trace elements from two stabilized low lime Indian fly ashes.” Environ. Earth Sci. 61 (8): 1735–1744. https://doi.org/10.1007/s12665-010-0487-5.
Skarżyńska, K. M. 1995. “Reuse of coal mining wastes in civil engineering — Part 1: Properties of minestone.” Waste Manage. 15 (1): 3–42. https://doi.org/10.1016/0956-053X(95)00004-J.
Stewart, B. R., and W. L. Daniels. 1992. “Physical and chemical properties of coal refuse from southwest virginia.” J. Environ. Qual. 21 (4): 635–642. https://doi.org/10.2134/jeq1992.00472425002100040018x.
Stracher, G. B., and T. P. Taylor. 2004. “Coal fires burning out of control around the world: Thermodynamic recipe for environmental catastrophe.” Int. J. Coal Geol. 59 (1): 7–17. https://doi.org/10.1016/j.coal.2003.03.002.
Sun, Q., B. Li, S. Tian, C. Cai, and Y. Xia. 2018. “Creep properties of geopolymer cemented coal gangue-fly ash backfill under dynamic disturbance.” Constr. Build. Mater. 191: 644–654. https://doi.org/10.1016/j.conbuildmat.2018.10.055.
Tan, W. F., L. A. Wang, and C. Huang. 2016. “Environmental effects of coal gangue and its utilization.” Energy Sources, Part A: Recovery, Utilization, and Environ. Effects 38 (24): 3721. https://doi.org/10.1080/15567036.2012.700997.
Tang, Q., L. Li, S. Zhang, L. Zheng, and C. Miao. 2018. “Characterization of heavy metals in coal gangue -reclaimed soils from a coal mining area.” J. Geochem. Explor. 186: 1–11. https://doi.org/10.1016/j.gexplo.2017.11.018.
Tasalloti, S. M. A., B. Indraratna, C. Rujikiatkamjorn, A. Heitor, and G. Chiaro. 2015. “A laboratory study on the shear behavior of mixtures of coal wash and steel furnace slag as potential structural fill.” Geotech. Test. J. 38 (4): 361–372. https://doi.org/10.1520/GTJ20140047.
Tong, G. H., Y. Wang, X. Luo, and T. J. Liu. 2010. “Evaluation on heavy metal contamination and potential ecological risks for soilless culture medium.” J. China Coal Society 359: 1559–1565.
Vieira, C. S., and P. M. Pereira. 2015. “Use of recycled construction and demolition materials in geotechnical applications: A review.” Resour. Conserv. Recycl. 103: 192–204. https://doi.org/10.1016/j.resconrec.2015.07.023.
Wang, C., W. Ni, S. Zhang, S. Wang, G. Gai, and W. Wang. 2016a. “Preparation and properties of autoclaved aerated concrete using coal gangue and iron ore tailings.” Constr. Build. Mater. 104: 109–115. https://doi.org/10.1016/j.conbuildmat.2015.12.041.
Wang, D., M. Tawk, B. Indraratna, A. Heitor, and C. Rujikiatkamjorn. 2019. “A mixture of coal wash and fly ash as a pavement substructure material.” Transp. Geotech. 21: 100265. https://doi.org/10.1016/j.trgeo.2019.100265.
Wang, J., Q. Qin, S. Hu, and K. Wu. 2016b. “A concrete material with waste coal gangue and fly ash used for farmland drainage in high groundwater level areas.” J. Cleaner Prod. 112: 631–638. https://doi.org/10.1016/j.jclepro.2015.07.138.
Wang, S., and X. Wang. 2018. “Potentially useful elements (Al, Fe, Ga, Ge, U) in coal gangue: A case study in weibei coal mining area, shaanxi province, northwestern China.” Environ. Sci. Pollut. Res. 25 (12): 11893–11904. https://doi.org/10.1007/s11356-018-1476-6.
Wang, Z., and N. Zhao. 2015. “Influence of coal gangue aggregate grading on strength properties of concrete.” Wuhan Univ. J. Nat. Sci. 20 (1): 66–72. https://doi.org/10.1007/s11859-015-1060-6.
Wu, D., Y. Hou, T. Deng, Y. Chen, and X. Zhao. 2017a. “Thermal, hydraulic and mechanical performances of cemented coal gangue -fly ash backfill.” Int. J. Miner. Process. 162: 12–18. https://doi.org/10.1016/j.minpro.2017.03.001.
Wu, H., Q. Wen, L. Hu, M. Gong, and Z. Tang. 2017b. “Feasibility study on the application of coal gangue as landfill liner material.” Waste Manage. 63: 161–171. https://doi.org/10.1016/j.wasman.2017.01.016.
Wu, J., G. L. Bai, P. Wang, and Y. Liu. 2018. “Mechanical properties of a new type of block made from shale and coal gangue.” Constr. Build. Mater. 190: 796–804. https://doi.org/10.1016/j.conbuildmat.2018.09.130.
Xu, H., W. Song, W. Cao, G. Shao, H. Lu, D. Yang, D. Chen, and R. Zhang. 2017. “Utilization of coal gangue for the production of brick.” J. Mater. Cycles Waste Manage. 19 (3): 1270–1278. https://doi.org/10.1007/s10163-016-0521-0.
Xu, Z. F., M. X. Zhang, and J. B. Zhu. 2012. “Application of Fly Ash and coal gangue for preparing high-class solid insulating brick by roasting at Low temperature conditions.” Adv. Mater. Res. 446–449: 883–889. https://doi.org/10.4028/www.scientific.net/AMR.446-449.883.
Yao, Y., and H. Sun. 2012. “A novel silica alumina-based backfill material composed of coal refuse and fly ash.” J. Hazard. Mater. 213–214: 71–82. https://doi.org/10.1016/j.jhazmat.2012.01.059.
Yao, Z., Y. Fang, W. Kong, X. Huang, and X. Wang. 2020. “Experimental study on dynamic mechanical properties of coal gangue concrete.” Adv. Mater. Sci. Eng. 2020: 8874191. https://doi.org/10.1155/2020/8874191.
Yu, J. L., F. R. Meng, X. C. Li, and A. Tahmasebi. 2012. “Power generation from coal gangue in China: Current status and development.” Adv. Mater. Res. 550: 443–446. https://doi.org/10.4028/www.scientific.net/AMR.550-553.443.
Yue, M., and F. Zhao. 2008. “Leaching experiments to study the release of trace elements from mineral separates from Chinese coals.” Int. J. Coal Geol. 73 (1): 43–51. https://doi.org/10.1016/j.coal.2007.07.002.
Zhang, M., T. El-Korchi, G. Zhang, J. Liang, and M. Tao. 2014. “Synthesis factors affecting mechanical properties, microstructure, and chemical composition of red mud–fly ash based geopolymers.” Fuel 134: 315–325. https://doi.org/10.1016/j.fuel.2014.05.058.
Zhang, N., H. Li, and X. Liu. 2016. “Hydration mechanism and leaching behavior of bauxite-calcination-method red mud- coal gangue based cementitious materials.” J. Hazard. Mater. 314: 172–180. https://doi.org/10.1016/j.jhazmat.2016.04.040.
Zhang, N., X. Liu, H. Sun, and L. Li. 2011. “Pozzolanic behaviour of compound-activated red mud- coal gangue mixture.” Cem. Concr. Res. 41 (3): 270–278. https://doi.org/10.1016/j.cemconres.2010.11.013.
Zhang, N., H. Sun, X. Liu, and J. Zhang. 2009. “Early-age characteristics of red mud– coal gangue cementitious material.” J. Hazard. Mater. 167 (1): 927–932. https://doi.org/10.1016/j.jhazmat.2009.01.086.
Zhang, W., C. Dong, P. Huang, Q. Sun, M. Li, and J. Chai. 2020. “Experimental study on the characteristics of activated coal gangue and coal gangue-based geopolymer.” Energies 13 (10): 2504. https://doi.org/10.3390/en13102504.
Zhang, X., J. Lin, J. Liu, F. Li, and Z. Pang. 2017. “Investigation of hydraulic-mechanical properties of paste backfill containing coal gangue -fly ash and Its application in an underground coal mine.” Energies 10 (9): 1309. https://doi.org/10.3390/en10091309.
Zhou, C., G. Liu, S. Cheng, T. Fang, and P. K. Lam. 2014a. “The environmental geochemistry of trace elements and naturally radionuclides in a coal gangue brick-making plant.” Sci. Rep. 4 (1): 6221. https://doi.org/10.1038/srep06221.
Zhou, C., G. Liu, S. Wu, and P. K. S. Lam. 2014b. “The environmental characteristics of usage of coal gangue in bricking-making: A case study at huainan, China.” Chemosphere 95: 274–280. https://doi.org/10.1016/j.chemosphere.2013.09.004.
Zhou, C., G. Liu, Z. Yan, T. Fang, and R. Wang. 2012. “Transformation behavior of mineral composition and trace elements during coal gangue combustion.” Fuel 97: 644–650. https://doi.org/10.1016/j.fuel.2012.02.027.
Zhou, M., Y. Dou, Y. Zhang, Y. Zhang, and B. Zhang. 2019a. “Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete.” Constr. Build. Mater. 220: 386–395. https://doi.org/10.1016/j.conbuildmat.2019.05.176.
Zhou, N., X. Han, J. Zhang, and M. Li. 2016. “Compressive deformation and energy dissipation of crushed coal gangue.” Powder Technol. 297: 220–228. https://doi.org/10.1016/j.powtec.2016.04.026.
Zhou, S., J. Dong, L. Yu, C. Xu, X. Jiao, and M. Wang. 2019b. “Effect of activated coal gangue in north China on the compressive strength and hydration process of cement.” J. Mater. Civ. Eng. 31 (4): 04019022. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002643.
Zydroń, T., A. Gruchot, and E. Zawisza. 2019. “Geotechnical characteristics of unburnt colliery spoils after coal-recovery.” MATEC Web Conf. 262: 04006. https://doi.org/10.1051/matecconf/201926204006.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 3July 2022

History

Received: Nov 29, 2021
Accepted: Feb 12, 2022
Published online: Apr 6, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 6, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Former Research Scholar, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India. ORCID: https://orcid.org/0000-0002-7027-8134. Email: [email protected]
Associate Professor, Dept. of Civil Engineering, National Institute of Technology, Warangal, Telangana 506004, India (corresponding author). ORCID: https://orcid.org/0000-0001-8623-7102. Email: [email protected]; [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology, Hyderabad, Sangareddy, Kandi, Telangana 502285, India. ORCID: https://orcid.org/0000-0003-1417-3650. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share