Abstract

This study concerned the field of radioactive waste conditioning by cementation, involving the optimization of cemented radioactive spent resin form quality by the development of new formulations based on mixtures of Class 45 portland cement, sand, and water, with metakaolin (MK) as a mineral additive. Here, the MK contribution to the cemented-waste form quality was evaluated. In this context, four new formulations were prepared containing 2%, 4%, 6%, and 8% MK relative to a mixture of cementing materials without MK. The mechanical quality of each of the cemented-resin forms was determined, after 28 days of curing, by measuring the compressive strength and analyzing the porosity. Characterizations of the prepared cemented-resin forms were completed using X-ray fluorescence, X-ray diffraction spectrometry, and scanning electron microscopy. It was found that, for each formulation, the phases of early and secondary pozzolanic hydration were marked by accelerations in the hydrate formation reactions. These phases, characterized by an increase in mechanical resistance following the silicate and aluminate dissolution phase, justify the inclusion of the MK and prove its participation in the early formation of hydrates. Among the four developed formulations, the one with 6% MK produced a cementitious mixture that allowed the containment of 14.38% of the spent ion-exchange resins, with a mechanical resistance to compression equivalent of to 15.92 MPa and a low-porosity equivalent to 34.98%. This formulation allowed the identification of the course of pozzolanic reactions favored by the addition of MK.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdel Rahman, R. O., and A. A. Zaki. 2020. “Comparative analysis of nuclear waste solidification performance models: Spent ion exchanger-cement based wasteforms.” Process Saf. Environ. Prot. 136: 115–125. https://doi.org/10.1016/j.psep.2019.12.038.
Abdel Rahman, R. O., D. H. A. Zin El Abidin, and H. Abou-Shady. 2014. “Cesium binding and leaching from single and binary contaminant cement–bentonite matrices.” Chem. Eng. J. 245: 276–287. https://doi.org/10.1016/j.cej.2014.02.033.
Ambroise, J., M. Murat, and J. Péra. 1985. “Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions.” Cem. Concr. Res. 15: 261–268. https://doi.org/10.1016/0008-8846(85)90037-7.
Asavapisit, S., W. Nanthamontry, and C. Polprasert. 2001. “Influence of condensed silica fume on the properties of cement-based solidified wastes.” Cem. Concr. Res. 31: 1147–1152. https://doi.org/10.1016/S0008-8846(01)00541-5.
Atkins, M., and F. P. Glasser. 1992. “Application of Portland cement-based materials to radioactive waste immobilization.” Waste Manage. (Oxford) 12: 105–131. https://doi.org/10.1016/0956-053X(92)90044-J.
Bucher, R. 2015. Vers une utilisation rationnelle des métakaolins flash: application aux béton. Toulouse, France: Matériaux composites et construction. Université Paul Sabatier.
Cassagnabère, F., G. Escadeillas, and M. Mouret. 2009. “Study of the reactivity of cement/metakaolin binders at early age for specific use in steam cured precast concrete.” Constr. Build. Mater. 23: 775–784. https://doi.org/10.1016/j.conbuildmat.2008.02.022.
Coumes, C. C. D., and S. Courtois. 2003. “Cementation of a low-level radioactive waste of complex chemistry: Investigation of the combined action of borate, chloride, sulfate and phosphate on cement hydration using response surface methodology.” Cem. Concr. Res. 33 (3): 305–316.
Dembovska, L., D. Bajare, I. Pundiene, and L. Vitola. 2017. “Effect of pozzolanic additives on the strength development of high performance concrete.” Procedia Eng. 172: 202–210. https://doi.org/10.1016/j.proeng.2017.02.050.
Drace, Z., and M. I. Ojovan. 2009. “The behaviours of cementitious materials in long term storage and disposal: An overview of results of the IAEA coordinated research project.” MRS Proc. 1193: 663. https://doi.org/10.1557/PROC-1193-663.
Faiz, Z., S. Fakhi, A. Bouih, and H. El Hadi. 2019. “Influence of natural additions on the physicochemical characteristics of cemented radioactive resins.” Int. J. Environ. Sci. Technol. 16: 6637–6646. https://doi.org/10.1007/s13762-019-02213-w.
Faiz, Z., S. Fakhi, A. Bouih, A. Idrissi, and M. Mouldouira. 2012. “Radioactive waste management: Optimization of the mechanical property of cemented ion exchange resin.” J. Mater. Environ. Sci. 3 (6): 1129–1136.
Fantozzi-Merle, C. 2003. Etude de matériaux à base de liant hydraulique contenant des polluants organiques modèles: propriétés structurales et de transfert. Ph.D thesis, Chemistry Depart., INSA de Lyon.
Ge, Z. 2021. “Durability and shrinkage performance of self-compacting concrete containing recycled fine clay brick aggregate.” Constr. Build. Mater. 308 (6): 125041. https://doi.org/10.1016/j.conbuildmat.2021.125041.
Ghailassi, T. E., M. A. Belayachi, A. Bouih, S. Labied, T. Guedira, and O. Benali. 2017. “Mathematical approach for research of new formulation for immobilization of radioactive waste in cementitious matrices.” Environ. Sci. 8: 9.
Glasser, F. P. 1992. “Progress in the immobilization of radioactive wastes in cement.” Cem. Concr. Res. 22: 201–216. https://doi.org/10.1016/0008-8846(92)90058-4.
Gougar, M. L. D., B. E. Scheetz, and D. M. Roy. 1996. “Ettringite and C–S–H Portland cement phases for waste ion immobilization: A review.” Waste Manage. (Oxford) 16: 295–303. https://doi.org/10.1016/S0956-053X(96)00072-4.
Gressier, F. n.d. Étude de la rétention des radionucléides dans les résines échangeuses d’ions des circuits d’une centrale nucléaire à eau sous pression. Paris: Chimie. École Nationale Supérieure des Mines de Paris.
Haouara, S., and A. Guettala. n.d. “Les facteurs d’influence sur la dégradation des ouvrages en béton arme dans la région de Biskra.” Courrier du Savoir Scientifique et Technique 6 (6): 109–116.
IAEA (International Atomic Energy Agency). 1997. Treatment technologies for low and intermediate level waste from nuclear applications. Final report of a co-ordinated research programme 1991–1996. IAEA-TECDOC-929. Vienna, Austria: IAEA.
IAEA (International Atomic Energy Agency). 2013. Aspects de la préparation et de la conduite des interventions d’urgence à prendre en considération par un état entreprenant un programme électronucléaire. Vienna, Austria: IAEA.
IAEA (International Atomic Energy Agency). 2017. IAEA Safety Glossary, Non-serial Publications, 2007. Vienna, Austria: IAEA.
Khater, H. M. 2011. “Influence of metakaolin on resistivity of cement mortar to magnesium chloride solution.” J. Mater. Civ. Eng. 23: 1295–1301. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000294.
Khatib, J. M., and S. Wild. 1996. “Pore size distribution of metakaolin paste.” Cem. Concr. Res. 26: 1545–1553. https://doi.org/10.1016/0008-8846(96)00147-0.
Lafond, E. 2013. Etude chimique et dimensionnelle de résines échangeuses d’ions cationiques en milieu cimentaire. Dijon, France: Chimie-Physique [physics.chem-ph]. Université de Bourgogne.
Lagier, F., and K. E. Kurtis. 2007. “Influence of Portland cement composition on early age reactions with metakaolin.” Cem. Concr. Res. 37: 1411–1417. https://doi.org/10.1016/j.cemconres.2007.07.002.
Li, Q., H. Geng, Z. Shui, and Y. Huang. 2015. “Effect of metakaolin addition and seawater mixing on the properties and hydration of concrete.” Appl. Clay Sci. 115: 51–60. https://doi.org/10.1016/j.clay.2015.06.043.
Messaoudi, F., O. Haddad, R. Bouras, and S. Kaci. 2015. Experimental Investigation of the Rheological Behaviour of Self-Compacting Marbled Paste. In Annales du Bâtiment et des Travaux Publics, 16. Editions ESKA.
Ogawa, K., H. Uchikawa, K. Takemoto, and I. Yasui. 1980. “The mechanism of the hydration in the system C3S-pozzolana.” Cem. Concr. Res. 10: 683–696. https://doi.org/10.1016/0008-8846(80)90032-0.
Osmanlioglu, A. E. 2002. “Immobilization of radioactive waste by cementation with purified kaolin clay.” Waste Manage. (Oxford) 22: 481–483. https://doi.org/10.1016/S0956-053X(02)00036-3.
Osmanlioglu, A. E. 2006. “Treatment of radioactive liquid waste by sorption on natural zeolite in Turkey.” J. Hazard. Mater. 137: 332–335. https://doi.org/10.1016/j.jhazmat.2006.02.013.
Osmanlioglu, A. E. 2007. “Progress in cementation of reactor resins.” Prog. Nucl. Energy 49: 20–26. https://doi.org/10.1016/j.pnucene.2006.07.006.
Rashad, A. M., and D. M. Sadek. 2017. “An investigation on Portland cement replaced by high-volume GGBS pastes modified with micro-sized metakaolin subjected to elevated temperatures.” Int. J. Sustainable Built Environ. 6: 91–101. https://doi.org/10.1016/j.ijsbe.2016.10.002.
Revilla-Cuesta, V., M. Skaf, J. A. Chica, J. A. Fuente-Alonso, and V. Ortega-López. 2020. “Thermal deformability of recycled self-compacting concrete under cyclical temperature variations.” Mater. Lett. 278: 128417. https://doi.org/10.1016/j.matlet.2020.128417.
Riley, B. J., J. D. Vienna, D. M. Strachan, J. S. McCloy, and J. L. Jerden. 2016. “Materials and processes for the effective capture and immobilization of radioiodine: A review.” J. Nucl. Mater. 470: 307–326. https://doi.org/10.1016/j.jnucmat.2015.11.038.
Sadiq, A., T. E. L. Ghailassi, Z. Faiz, Y. Haddaji, A. Bouih, H. Hannache, and S. Fakhi. 2021a. “Study of the spent resins confinement, as radioactive waste, by cementation in the presence of Moroccan natural red clay.” Prog. Nucl. Energy 141: 103967. https://doi.org/10.1016/j.pnucene.2021.103967.
Sadiq, A., N. Moukrim, T. El Ghailassi, Z. Faiz, S. Fakhi, and H. Hannache. 2021b. “The Callovo-Oxfordian as sand substitution in concrete: Effect on the confinement of the ion exchange resin.” Int. J. Inf. Technol. Appl. Sci. 3: 142–147. https://doi.org/10.52502/ijitas.v3i3.103.
San Nicolas, R. 2011. Approche performantielle des bétons avec métakaolins obtenus par calcination flash. Toulouse, France: Matériaux. Université Paul Sabatier.
Sasanian, S., and T. A. Newson. 2014. “Basic parameters governing the behaviour of cement-treated clays.” Soils Found. 54: 209–224. https://doi.org/10.1016/j.sandf.2014.02.011.
Sun, Q., J. Hu, and J. Wang. 2014. “Optimization of composite admixtures used in cementation formula for radioactive evaporator concentrates.” Prog. Nucl. Energy 70: 1–5. https://doi.org/10.1016/j.pnucene.2013.08.004.
Sun, Q., J. Li, and J. Wang. 2011. “Solidification of borate radioactive resins using sulfoaluminate cement blending with zeolite.” Nucl. Eng. Des. 241: 5308–5315. https://doi.org/10.1016/j.nucengdes.2011.08.028.
Wang, W., X. Liu, L. Guo, and P. Duan. 2019. “Evaluation of properties and microstructure of cement paste blended with metakaolin subjected to high temperatures.” Materials 12: 941. https://doi.org/10.3390/ma12060941.
Wesselsky, A., and O. M. Jensen. 2009. “Synthesis of pure Portland cement phases.” Cem. Concr. Res. 39: 973–980. https://doi.org/10.1016/j.cemconres.2009.07.013.
Wild, S., and J. M. Khatib. 1997. “Portlandite consumption in metakaolin cement pastes and mortars.” Cem. Concr. Res. 27: 137–146. https://doi.org/10.1016/S0008-8846(96)00187-1.
Zhang, H., H. Yuan, Z. Ge, J. Wu, C. Fang, E. Schlangen, and B. Šavija. 2021. “Fresh and hardened properties of self-compacting concrete containing recycled fine clay brick aggregates.” Mater. Struct. 54 (4): 1–13.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 26Issue 3July 2022

History

Received: Dec 3, 2021
Accepted: Feb 8, 2022
Published online: Apr 25, 2022
Published in print: Jul 1, 2022
Discussion open until: Sep 25, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Asmae Sadiq [email protected]
Laboratory of Engineering and Materials LIMAT, Faculty of Sciences Ben M’Sik, Dept. of Physics, Hassan II Univ., Casablanca BP 7955, Morocco. Email: [email protected]
Laboratory of Engineering and Materials LIMAT, Faculty of Sciences Ben M’Sik, Dept. of Physics, Hassan II Univ., Casablanca BP 7955, Morocco. Email: [email protected]
Touria E. L. Ghailassi [email protected]
National Center of Sciences, Technology and Nuclear Energy (CNESTEN), Nuclear Research Center of Maamora (CENM) Rabat BP 1382, Morocco. Email: [email protected]
EMAFI Team, Multidisciplinary Laboratory of Research and Innovation, Polydisciplinary Faculty of Khouribga, Dept. of Physics-Chemistry, Sultan Moulay Slimane Univ., Khouribga 25000, Morocco (corresponding author). ORCID: https://orcid.org/0000-0002-0977-0541. Email: [email protected]
Abderahim Bouih [email protected]
National Center of Sciences, Technology and Nuclear Energy (CNESTEN), Nuclear Research Center of Maamora (CENM) Rabat BP 1382, Morocco. Email: [email protected]
Hassan Hannache [email protected]
Laboratory of Engineering and Materials LIMAT, Faculty of Sciences Ben M’Sik, Dept. of Chemistry, Hassan II Univ., Casablanca BP 7955, Morocco. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share