Technical Papers
Apr 7, 2021

Proclaiming Electrochemical Oxidation as a Potent Technology for the Treatment of Wastewater Containing Xenobiotic Compounds: A Mini Review

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 3

Abstract

Xenobiotics are newly identified contaminants, recently discovered to be present in the environment and possessing potential threat to different components of the ecosystems due to their inherent toxicity and endocrine-disrupting nature. Moreover, due to their recalcitrant nature, these emerging contaminants are not effectively removed by existing conventional wastewater treatment technologies. In this regard, the present review focuses on the development of electrochemical oxidation (EO) as a sustainable and efficacious technology for the treatment of wastewater containing xenobiotics. The technology of EO works on the process of in-situ generation of highly reactive hydroxyl radicals (OH˙), commonly via metallic cathode catalysts due to the application of electric current, which further oxidizes and is thus effective in eliminating pollutants such as xenobiotics from wastewater. This mini-review will aid in understanding the application of EO for the removal of xenobiotics from wastewater and different metal catalysts employed in EO for the production of hydrogen peroxide. Moreover, the critical factors affecting the performance of EO for xenobiotics removal have also been elucidated for enhancing the understanding of the readers in terms of scaling-up of an EO reactor.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The present research work is supported under the research grant of Department of Science and Technology [File No. - DST/TMD (EWO)/OWUIS-2018/RS-10(C)], Government of India.

References

Abou-Taleb, E. M., M. S. Hellal, and K. H. Kamal. 2021. “Electro-oxidation of phenol in petroleum wastewater using a novel pilot-scale electrochemical cell with graphite and stainless-steel electrodes.” Water Environ. J. 35 (1): 259–268. https://doi.org/10.1111/wej.12624.
Adak, A., A. Pal, and M. Bandyopadhyay. 2006. “Removal of phenol from water environment by surfactant-modified alumina through adsolubilization.” Colloids Surf., A 277 (1–3): 63–68. https://doi.org/10.1016/j.colsurfa.2005.11.012.
Ahmad, A., S. Das, and M. M. Ghangrekar. 2020. “Removal of xenobiotics from wastewater by electrocoagulation: A mini-review.” J. Indian Chem. Soc. 97: 493–500.
Ahmad, M., T. Abbott, and C. Eskicioglu. 2019. “Effectiveness of single-stage and sequential sludge digestion on removal of recalcitrant pharmaceuticals and conventional pollutants.” Bioresour. Technol. Rep. 8: 100326. https://doi.org/10.1016/j.biteb.2019.100326.
Barrera-Díaz, C. E., B. A. Frontana-Uribe, M. Rodríguez-Peña, J. C. Gomez-Palma, and B. Bilyeu. 2018. “Integrated advanced oxidation process, ozonation-electrodegradation treatments, for nonylphenol removal in batch and continuous reactor.” Catal. Today 305: 108–116. https://doi.org/10.1016/j.cattod.2017.09.003.
Bouya, H., M. Errami, R. Salghi, L. Bazzi, A. Zarrouk, S. S. Al-Deyab, B. Hammouti, L. Bazzi, and A. Chakir. 2012. “Electrochemical degradation of cypermethrin pesticide on a SnO2 anode.” Int. J. Electrochem. Sci. 7 (4): 3453–3465.
Brillas, E., S. Garcia-Segura, M. Skoumal, and C. Arias. 2010. “Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes.” Chemosphere 79 (6): 605–612. https://doi.org/10.1016/j.chemosphere.2010.03.004.
Brillas, E., E. Mur, R. Sauleda, L. Sànchez, J. Peral, X. Domènech, and J. Casado. 1998. “Aniline mineralization by AOP’s: Anodic oxidation, photocatalysis, electro-Fenton and photoelectro-Fenton processes.” Appl. Catal., B 16 (1): 31–42. https://doi.org/10.1016/S0926-3373(97)00059-3.
Chakraborty, I., S. M. Sathe, C. N. Khuman, and M. M. Ghangrekar. 2020. “Bioelectrochemically powered remediation of xenobiotic compounds and heavy metal toxicity using microbial fuel cell and microbial electrolysis cell.” Mater. Sci. Energy Technol. 3: 104–115. https://doi.org/10.1016/j.mset.2019.09.011.
Chen, L., P. Campo, and M. J. Kupferle. 2015. “Identification of chlorinated oligomers formed during anodic oxidation of phenol in the presence of chloride.” J. Hazard. Mater. 283: 574–581. https://doi.org/10.1016/j.jhazmat.2014.10.001.
Choi, C. H., M. Kim, H. C. Kwon, S. J. Cho, S. Yun, H. T. Kim, K. J. J. Mayrhofer, H. Kim, and M. Choi. 2016. “Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst.” Nat. Commun. 7 (1): 1–9.
Das, S., A. Mishra, and M. M. Ghangrekar. 2020a. “Concomitant production of bioelectricity and hydrogen peroxide leading to the holistic treatment of wastewater in microbial fuel cell.” Chem. Phys. Lett. 759: 137986. https://doi.org/10.1016/j.cplett.2020.137986.
Das, S., A. Mishra, and M. M. Ghangrekar. 2020b. “Production of hydrogen peroxide using various metal-based catalysts in electrochemical and bioelectrochemical systems: Mini review.” J. Hazard. Toxic Radioact. Waste 24 (3): 06020001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000498.
Dev, S., S. Roy, and J. Bhattacharya. 2017. “Optimization of the operation of packed bed bioreactor to improve the sulfate and metal removal from acid mine drainage.” J. Environ. Manage. 200: 135–144. https://doi.org/10.1016/j.jenvman.2017.04.102.
Dominguez, C. M., N. Oturan, A. Romero, A. Santos, and M. A. Oturan. 2018. “Removal of organochlorine pesticides from lindane production wastes by electrochemical oxidation.” Environ. Sci. Pollut. Res. 25 (35): 34985–34994. https://doi.org/10.1007/s11356-018-1425-4.
Dong, J., W. Zhao, S. Zhou, C. Zhang, and D. Fu. 2019. “Transformation of bisphenol A by electrochemical oxidation in the presence of nitrite and formation of nitrated aromatic by-products.” Chemosphere 236: 124835. https://doi.org/10.1016/j.chemosphere.2019.124835.
Dvorak, P., S. Bidmanova, J. Damborsky, and Z. Prokop. 2014. “Immobilized synthetic pathway for biodegradation of toxic recalcitrant pollutant 1,2,3-trichloropropane.” Environ. Sci. Technol. 48 (12): 6859–6866. https://doi.org/10.1021/es500396r.
Edwards, J. K., B. E. Solsona, P. Landon, A. F. Carley, A. Herzing, C. J. Kiely, and G. J. Hutchings. 2005. “Direct synthesis of hydrogen peroxide from H2 and O2 using TiO2-supported Au-Pd catalysts.” J. Catal. 236 (1): 69–79. https://doi.org/10.1016/j.jcat.2005.09.015.
El-Ghenymy, A., F. Centellas, J. A. Garrido, R. M. Rodríguez, I. Sirés, P. L. Cabot, and E. Brillas. 2014. “Decolorization and mineralization of Orange G azo dye solutions by anodic oxidation with a boron-doped diamond anode in divided and undivided tank reactors.” Electrochim. Acta 130: 568–576. https://doi.org/10.1016/j.electacta.2014.03.066.
Galal, A., N. F. Atta, and M. A. Hefnawy. 2020. “Lanthanum nickel oxide nano-perovskite decorated carbon nanotubes/poly(aniline) composite for effective electrochemical oxidation of urea.” J. Electroanal. Chem. 862: 114009. https://doi.org/10.1016/j.jelechem.2020.114009.
Gao, P., H. Yao, S. Yuan, Y. Wang, W. Wang, I. M. Ali, and Z.-H. Hu. 2021. “Degradation of nonylphenol ethoxylate-40 in high saline wastewater by electrochemical oxidation.” Environ. Eng. Sci. 38 (2): 81–88. https://doi.org/10.1089/ees.2020.0045.
Garcia-Segura, S., J. Keller, E. Brillas, and J. Radjenovic. 2015. “Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment.” J. Hazard. Mater. 283: 551–557. https://doi.org/10.1016/j.jhazmat.2014.10.003.
Garcia-Segura, S., J. D. Ocon, and M. N. Chong. 2018. “Electrochemical oxidation remediation of real wastewater effluents — A review.” Process Saf. Environ. Prot. 113: 48–67. https://doi.org/10.1016/j.psep.2017.09.014.
Ghanbarlou, H., B. Nasernejad, M. Nikbakht Fini, M. E. Simonsen, and J. Muff. 2020. “Synthesis of an iron-graphene based particle electrode for pesticide removal in three-dimensional heterogeneous electro-Fenton water treatment system.” Chem. Eng. J. 395: 125025. https://doi.org/10.1016/j.cej.2020.125025.
Ghime, D., and P. Ghosh. 2020. “Decolorization of diazo dye trypan blue by electrochemical oxidation: Kinetics with a model based on the Fermi’s equation.” J. Environ. Chem. Eng. 8 (1): 102792. https://doi.org/10.1016/j.jece.2018.11.037.
Gu, L., B. Wang, H. Ma, and W. Kong. 2006. “Catalytic oxidation of anionic surfactants by electrochemical oxidation with CuO–Co2O3–PO43− modified kaolin.” J. Hazard. Mater. 137 (2): 842–848. https://doi.org/10.1016/j.jhazmat.2006.03.012.
Gupta, A., S. Das, and M. M. Ghangrekar. 2020. “Optimal cathodic imposed potential and appropriate catalyst for the synthesis of hydrogen peroxide in microbial electrolysis cell.” Chem. Phys. Lett. 754: 137690. https://doi.org/10.1016/j.cplett.2020.137690.
Hai, H., X. Xing, S. Li, S. Xia, and J. Xia. 2020. “Electrochemical oxidation of sulfamethoxazole in BDD anode system: Degradation kinetics, mechanisms and toxicity evaluation.” Sci. Total Environ. 738: 139909. https://doi.org/10.1016/j.scitotenv.2020.139909.
Hernando, M. D., M. J. Gómez, A. Agüera, and A. R. Fernández-Alba. 2007. “LC-MS analysis of basic pharmaceuticals (beta-blockers and anti-ulcer agents) in wastewater and surface water.” TrAC, Trends Anal. Chem. 26 (6): 581–594. https://doi.org/10.1016/j.trac.2007.03.005.
Jasper, J. T., Y. Yang, and M. R. Hoffmann. 2017. “Toxic byproduct formation during electrochemical treatment of latrine wastewater.” Environ. Sci. Technol. 51 (12): 7111–7119. https://doi.org/10.1021/acs.est.7b01002.
Khan, M. J., R. Singh, K. Shewani, P. Shukla, P. V. Bhaskar, K. B. Joshi, and V. Vinayak. 2020. “Exopolysaccharides directed embellishment of diatoms triggered on plastics and other marine litter.” Sci. Rep. 10 (1): 18448. https://doi.org/10.1038/s41598-020-74801-7.
Kong, W., B. Wang, H. Ma, and L. Gu. 2006. “Electrochemical treatment of anionic surfactants in synthetic wastewater with three-dimensional electrodes.” J. Hazard. Mater. 137 (3): 1532–1537. https://doi.org/10.1016/j.jhazmat.2006.04.037.
Kothari, M. S., and K. A. Shah. 2020. “Electrochemical oxidation for decolorization of Rhodamine-B dye using mixed metal oxide electrode: Modeling and optimization.” Water Sci. Technol. 81 (4): 720–731. https://doi.org/10.2166/wst.2020.151.
Lanzarini-Lopes, M., S. Garcia-Segura, K. Hristovski, and P. Westerhoff. 2017. “Electrical energy per order and current efficiency for electrochemical oxidation of p-chlorobenzoic acid with boron-doped diamond anode.” Chemosphere 188: 304–311. https://doi.org/10.1016/j.chemosphere.2017.08.145.
Lebik-Elhadi, H., Z. Frontistis, H. Ait-Amar, S. Amrani, and D. Mantzavinos. 2018. “Electrochemical oxidation of pesticide thiamethoxam on boron doped diamond anode: Role of operating parameters and matrix effect.” Process Saf. Environ. Prot. 116: 535–541. https://doi.org/10.1016/j.psep.2018.03.021.
Lewis, R. J., et al. 2019. “The direct synthesis of H2O2 using TS-1 supported catalysts.” ChemCatChem 11 (6): 1673–1680. https://doi.org/10.1002/cctc.201900100.
Liu, S. Y., D. H. Mei, M. A. Nahil, S. Gadkari, S. Gu, P. T. Williams, and X. Tu. 2017. “Hybrid plasma-catalytic steam reforming of toluene as a biomass tar model compound over Ni/Al2O3 catalysts.” Fuel Process. Technol. 166: 269–275. https://doi.org/10.1016/j.fuproc.2017.06.001.
Maity, S., and M. Eswaramoorthy. 2016. “Ni-Pd bimetallic catalysts for the direct synthesis of H2O2-unusual enhancement of Pd activity in the presence of Ni.” J. Mater. Chem. A 4 (9): 3233–3237. https://doi.org/10.1039/C6TA00486E.
Mandal, P., B. K. Dubey, and A. K. Gupta. 2017. “Review on landfill leachate treatment by electrochemical oxidation: Drawbacks, challenges and future scope.” Waste Manage. (Oxford) 69: 250–273. https://doi.org/10.1016/j.wasman.2017.08.034.
Martínez-Huitle, C. A., and M. Panizza. 2018. “Electrochemical oxidation of organic pollutants for wastewater treatment.” Curr. Opin. Electrochem. 11 (1): 62–71. https://doi.org/10.1016/j.coelec.2018.07.010.
Migliorini, F. L., N. A. Braga, S. A. Alves, M. R. V. Lanza, M. R. Baldan, and N. G. Ferreira. 2011. “Anodic oxidation of wastewater containing the Reactive Orange 16 Dye using heavily boron-doped diamond electrodes.” J. Hazard. Mater. 192 (3): 1683–1689. https://doi.org/10.1016/j.jhazmat.2011.07.007.
Min, S. J., J. G. Kim, and K. Baek. 2020. “Role of carbon fiber electrodes and carbonate electrolytes in electrochemical phenol oxidation.” J. Hazard. Mater. 400: 123083. https://doi.org/10.1016/j.jhazmat.2020.123083.
Moreira, F. C., R. A. R. Boaventura, E. Brillas, and V. J. P. Vilar. 2017. “Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters.” Appl. Catal., B 202: 217–261. https://doi.org/10.1016/j.apcatb.2016.08.037.
Murugananthan, M., S. Yoshihara, T. Rakuma, and T. Shirakashi. 2008. “Mineralization of bisphenol A (BPA) by anodic oxidation with boron-doped diamond (BDD) electrode.” J. Hazard. Mater. 154 (1–3): 213–220. https://doi.org/10.1016/j.jhazmat.2007.10.011.
Oturan, M. A., and E. Brillas. 2007. “Electrochemical advanced oxidation processes (EAOPs) for environmental applications.” Port. Electrochim. Acta 25 (1): 1–18. https://doi.org/10.4152/pea.200701001.
Pan, G., X. Sun, and Z. Sun. 2020. “Fabrication of multi-walled carbon nanotubes and carbon black co-modified graphite felt cathode for amoxicillin removal by electrochemical advanced oxidation processes under mild pH condition.” Environ. Sci. Pollut. Res. 27 (8): 8231–8247. https://doi.org/10.1007/s11356-019-07358-2.
Panizza, M., D. Clematis, and G. Cerisola. 2016. “Electrochemical treatment of poorly biodegradable DPC cationic surfactant.” J. Environ. Chem. Eng. 4 (3): 2692–2697. https://doi.org/10.1016/j.jece.2016.05.013.
Park, E. D., Y. S. Hwang, and J. S. Lee. 2001. “Direct conversion of methane into oxygenates by H2O2 generated in situ from dihydrogen and dioxygen.” Catal. Commun. 2 (6–7): 187–190. https://doi.org/10.1016/S1566-7367(01)00030-9.
Periyasamy, S., and M. Muthuchamy. 2018. “Electrochemical oxidation of paracetamol in water by graphite anode: Effect of pH, electrolyte concentration and current density.” J. Environ. Chem. Eng. 6 (6): 7358–7367. https://doi.org/10.1016/j.jece.2018.08.036.
Priyadarshini, M., I. Das, and M. M. Ghangrekar. 2020. “Application of metal organic framework in wastewater treatment and detection of pollutants: Review.” J. Indian Chem. Soc. 97 (4): 507–512.
Qu, C., G. S. Soomro, N. Ren, D. Liang, S. Lu, Y. Xiang, and S. Zhang. 2020. “Enhanced electro-oxidation/peroxone (in situ) process with a Ti-based nickel-antimony doped tin oxide anode for phenol degradation.” J. Hazard. Mater. 384: 121398. https://doi.org/10.1016/j.jhazmat.2019.121398.
Rabaaoui, N., M. E. K. Saad, Y. Moussaoui, M. S. Allagui, A. Bedoui, and E. Elaloui. 2013. “Anodic oxidation of o-nitrophenol on BDD electrode: Variable effects and mechanisms of degradation.” J. Hazard. Mater. 250–251: 447–453. https://doi.org/10.1016/j.jhazmat.2013.02.027.
Ridruejo, C., F. Centellas, P. L. Cabot, I. Sirés, and E. Brillas. 2018. “Electrochemical Fenton-based treatment of tetracaine in synthetic and urban wastewater using active and non-active anodes.” Water Res. 128: 71–81. https://doi.org/10.1016/j.watres.2017.10.048.
Rodríguez-Peña, M., C. E. Barrera-Díaz, B. A. Frontana-Uribe, and G. Roa-Morales. 2019. “Nonylphenol degradation by simultaneous electrooxidation on BDD anode and oxidation by H2O2 in a continuous flow electrochemical reactor.” Int. J. Electrochem. Sci. 14 (5): 4409–4419. https://doi.org/10.20964/2019.05.21.
Rossi, A. S., N. Fantón, M. P. Michlig, M. R. Repetti, and J. Cazenave. 2020. “Fish inhabiting rice fields: Bioaccumulation, oxidative stress and neurotoxic effects after pesticides application.” Ecol. Indic. 113: 106186. https://doi.org/10.1016/j.ecolind.2020.106186.
Saha, J., I. Chakraborty, and M. M. Ghangrekar. 2020. “A novel tin-chloride-zirconium oxide-kaolin composite coated carbon felt anode for electro-oxidation of surfactant from municipal wastewater.” J. Environ. Chem. Eng. 8 (6): 104489. https://doi.org/10.1016/j.jece.2020.104489.
Särkkä, H., A. Bhatnagar, and M. Sillanpää. 2015. “Recent developments of electro-oxidation in water treatment — A review.” J. Electroanal. Chem. 754: 46–56. https://doi.org/10.1016/j.jelechem.2015.06.016.
Shen, R., et al. 2019. “High-concentration single atomic Pt sites on hollow CuSx for selective O2 reduction to H2O2 in acid solution.” Chem 5 (8): 2099–2110. https://doi.org/10.1016/j.chempr.2019.04.024.
Singer, H., S. Jaus, I. Hanke, A. Lück, J. Hollender, and A. C. Alder. 2010. “Determination of biocides and pesticides by on-line solid phase extraction coupled with mass spectrometry and their behaviour in wastewater and surface water.” Environ. Pollut. 158 (10): 3054–3064. https://doi.org/10.1016/j.envpol.2010.06.013.
Singla, J., V. K. Sangal, A. Singh, and A. Verma. 2020. “Application of mixed metal oxide anode for the electro-oxidation/disinfection of synthetic urine: Potential of harnessing molecular hydrogen generation.” J. Environ. Manage. 255: 109847. https://doi.org/10.1016/j.jenvman.2019.109847.
Sirés, I., E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza. 2014. “Electrochemical advanced oxidation processes: Today and tomorrow. A review.” Environ. Sci. Pollut. Res. 21 (14): 8336–8367. https://doi.org/10.1007/s11356-014-2783-1.
Sivodia, C., and A. Sinha. 2020. “Assessment of graphite electrode on the removal of anticancer drug cytarabine via indirect electrochemical oxidation process: Kinetics & pathway study.” Chemosphere 243: 125456. https://doi.org/10.1016/j.chemosphere.2019.125456.
Song, S., J. Fan, Z. He, L. Zhan, Z. Liu, J. Chen, and X. Xu. 2010. “Electrochemical degradation of azo dye C.I. Reactive Red 195 by anodic oxidation on Ti/SnO2-Sb/PbO2 electrodes.” Electrochim. Acta 55 (11): 3606–3613. https://doi.org/10.1016/j.electacta.2010.01.101.
Sophia A., C., and E. C. Lima. 2018. “Removal of emerging contaminants from the environment by adsorption.” Ecotoxicol. Environ. Saf. 150: 1–17. https://doi.org/10.1016/j.ecoenv.2017.12.026.
Starling, M. C. V. M., C. C. Amorim, and M. M. D. Leão. 2019. “Occurrence, control and fate of contaminants of emerging concern in environmental compartments in Brazil.” J. Hazard. Mater. 372: 17–36. https://doi.org/10.1016/j.jhazmat.2018.04.043.
Steter, J. R., E. Brillas, and I. Sirés. 2016. “On the selection of the anode material for the electrochemical removal of methylparaben from different aqueous media.” Electrochim. Acta 222: 1464–1474. https://doi.org/10.1016/j.electacta.2016.11.125.
Sui, X., X. Duan, F. Xu, and L. Chang. 2019. “Fabrication of three-dimensional networked PbO2 anode for electrochemical oxidation of organic pollutants in aqueous solution.” J. Taiwan Inst. Chem. Eng. 100: 74–84. https://doi.org/10.1016/j.jtice.2019.04.007.
Sunil, J. K., and J. P. Kaware. 2013. “Review on research for removal of phenol from wastewate.” Int. J. Sci. Res. Publ. 3 (4): 2250–3153.
Teng, J., G. Liu, J. Liang, and S. You. 2020. “Electrochemical oxidation of sulfadiazine with titanium suboxide mesh anode.” Electrochim. Acta 331: 135441. https://doi.org/10.1016/j.electacta.2019.135441.
Voicu, A., N. Duteanu, A. Rădută, and N. Vaszilcsin. 2015. “Influence of electrochemical treatment over cellular adherence onto the surface of titanium surgical implants.” Int. J. Electrochem. Sci. 10 (7): 5624–5638.
Wang, Y., C. Shen, M. Zhang, B. T. Zhang, and Y. G. Yu. 2016. “The electrochemical degradation of ciprofloxacin using a SnO2-Sb/Ti anode: Influencing factors, reaction pathways and energy demand.” Chem. Eng. J. 296: 79–89. https://doi.org/10.1016/j.cej.2016.03.093.
Wu, X., X. Song, H. Chen, and J. Yu. 2020. “Treatment of phenolic compound wastewater using CuFe2O4/Al2O3 particle electrodes in a three-dimensional electrochemical oxidation system.” Environ. Technol. 3330: 1–12.
Xia, Y., X. Bian, Y. Xia, W. Zhou, L. Wang, S. Fan, P. Xiong, T. Zhan, Q. Dai, and J. Chen. 2020a. “Effect of indium doping on the PbO2 electrode for the enhanced electrochemical oxidation of aspirin: An electrode comparative study.” Sep. Purif. Technol. 237: 116321. https://doi.org/10.1016/j.seppur.2019.116321.
Xia, Y., G. Wang, L. Guo, Q. Dai, and X. Ma. 2020b. “Electrochemical oxidation of Acid Orange 7 azo dye using a PbO2 electrode: Parameter optimization, reaction mechanism and toxicity evaluation.” Chemosphere 241: 125010. https://doi.org/10.1016/j.chemosphere.2019.125010.
Xu, L., S. Tang, K. Wang, X. Ma, and J. Niu. 2020. “Insights into the degradation and detoxication mechanisms of aqueous capecitabine in electrochemical oxidation process.” Chemosphere 241: 125058. https://doi.org/10.1016/j.chemosphere.2019.125058.
Yadav, A. K., L. Singh, A. Mohanty, S. Satya, and T. R. Sreekrishnan. 2012. “Removal of various pollutants from wastewater by electrocoagulation using iron and aluminium electrode.” Desalin. Water Treat. 46 (1–3): 352–358. https://doi.org/10.1080/19443994.2012.677560.
Yang, W., M. Zhou, N. Oturan, Y. Li, and M. A. Oturan. 2019. “Electrocatalytic destruction of pharmaceutical imatinib by electro-Fenton process with graphene-based cathode.” Electrochim. Acta 305: 285–294. https://doi.org/10.1016/j.electacta.2019.03.067.
Yang, Y. 2020. “Recent advances in the electrochemical oxidation water treatment: Spotlight on byproduct control.” Front. Environ. Sci. Eng. 14 (5): 85. https://doi.org/10.1007/s11783-020-1264-7.
Yang, Y., Y. Xia, F. Wei, L. Zhang, and Y. Yao. 2020. “Electrochemical oxidation of the pesticide nitenpyram using a Gd-PbO2 anode: Operation parameter optimization and degradation mechanism.” J. Chem. Technol. Biotechnol. 95 (8): 2120–2128. https://doi.org/10.1002/jctb.6397.
Yao, Y., B. Ren, Y. Yang, C. Huang, and M. Li. 2019. “Preparation and electrochemical treatment application of Ce-PbO2/ZrO2 composite electrode in the degradation of acridine orange by electrochemical advanced oxidation process.” J. Hazard. Mater. 361: 141–151. https://doi.org/10.1016/j.jhazmat.2018.08.081.
Zaied, B. K., M. Rashid, M. Nasrullah, A. W. Zularisam, D. Pant, and L. Singh. 2020. “A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process.” Sci. Total Environ. 726: 138095. https://doi.org/10.1016/j.scitotenv.2020.138095.
Zhang, Y., K. Wei, W. Han, X. Sun, J. Li, J. Shen, and L. Wang. 2016. “Improved electrochemical oxidation of tricyclazole from aqueous solution by enhancing mass transfer in a tubular porous electrode electrocatalytic reactor.” Electrochim. Acta 189: 1–8. https://doi.org/10.1016/j.electacta.2015.10.119.
Zhou, M., H. Särkkä, and M. Sillanpää. 2011. “A comparative experimental study on methyl orange degradation by electrochemical oxidation on BDD and MMO electrodes.” Sep. Purif. Technol. 78 (3): 290–297. https://doi.org/10.1016/j.seppur.2011.02.013.
Zhuo, Q., J. Wang, J. Niu, B. Yang, and Y. Yang. 2020. “Electrochemical oxidation of perfluorooctane sulfonate (PFOS) substitute by modified boron doped diamond (BDD) anodes.” Chem. Eng. J. 379: 122280. https://doi.org/10.1016/j.cej.2019.122280.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 3July 2021

History

Received: Jan 9, 2021
Accepted: Mar 3, 2021
Published online: Apr 7, 2021
Published in print: Jul 1, 2021
Discussion open until: Sep 7, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0001-9494-9599.
Monali Priyadarshini
Research Scholar, School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0001-7059-2070.
Professor, Dept. of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India (corresponding author). ORCID: https://orcid.org/0000-0002-0691-9873. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Advanced biological and non-biological technologies for carbon sequestration, wastewater treatment, and concurrent valuable recovery: A review, Journal of CO2 Utilization, 10.1016/j.jcou.2022.102372, 68, (102372), (2023).
  • Statistical Investigation in Conjunction with a Box–Behnken Design for the Removal of Dyes Using Electrocoagulation, Journal of Hazardous, Toxic, and Radioactive Waste, 10.1061/(ASCE)HZ.2153-5515.0000679, 26, 2, (2022).
  • Adsorption applications of synthetically prepared PANI-CuO based nanocomposite material, Journal of the Indian Chemical Society, 10.1016/j.jics.2022.100551, 99, 7, (100551), (2022).
  • Application of innovative electrochemical and microbial electrochemical technologies for the efficacious removal of emerging contaminants from wastewater: A review, Journal of Environmental Chemical Engineering, 10.1016/j.jece.2022.108230, 10, 5, (108230), (2022).
  • Electrocoagulation and electrooxidation technologies for pesticide removal from water or wastewater: A review, Chemosphere, 10.1016/j.chemosphere.2022.134709, 302, (134709), (2022).
  • Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review, Environmental Science and Pollution Research, 10.1007/s11356-021-18287-4, 30, 10, (25427-25451), (2022).
  • Removal of caffeine from wastewater using electrochemical advanced oxidation process: A mini review, Case Studies in Chemical and Environmental Engineering, 10.1016/j.cscee.2021.100129, 4, (100129), (2021).
  • Application of microbial electrochemical technologies for the treatment of petrochemical wastewater with concomitant valuable recovery: A review, Environmental Science and Pollution Research, 10.1007/s11356-021-14944-w, 29, 41, (61783-61802), (2021).
  • Role of bioelectrochemical systems for the remediation of emerging contaminants from wastewater: A review, Journal of Basic Microbiology, 10.1002/jobm.202100368, 62, 3-4, (201-222), (2021).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share