Technical Papers
Dec 10, 2020

Solubilization of Heavy Metals during Anaerobic Digestion of Sewage Sludge Using Acidogenesis

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

Sewage sludge produced by many municipal wastewater treatment plants contains various heavy metals that limit its use on agricultural land. The existing treatment processes for removing heavy metals are not cost-effective or eco-friendly due to the requirement of aeration or the use of various harmful leaching agents. This paper explores the solubilization of heavy metals present in the sewage sludge using the acidogenesis phase of the anaerobic digestion process without using any harmful compounds. To achieve this objective, an anaerobic batch reactor was used, in which sewage sludge was added with different solid concentrations and carbon source (glucose) concentrations. During this process, volatile fatty acids were produced, which decreased the pH of the system. The maximum decrease in the pH was observed in the reactor that had the maximum glucose concentration and the minimum total solid concentration. In this reactor, the pH dropped below 4.5. The solubilization of heavy metals was observed as Zn: 41% (333 mg/kg), Ni: 31% (8.5 mg/kg), Cr: 30% (13 mg/kg), Pb: 29% (11 mg/kg), Co: 28% (1.4 mg/kg), and Cd: 27% (0.5 mg/kg).

Get full access to this article

View all available purchase options and get full access to this article.

References

APHA (American Public Health Association). 2017. Standard methods for the examination of water and wastewater, edited by R. B. Baird, A. D. Eaton, E. W. Rice, and L. L. Bridgewater. Washington, DC: APHA, American Water Works Association, Water Environment Federation.
Banerjee, G. 2010. “Treatment of arsenic-laden water plant sludge by anaerobic digestion.” Pract. Period. Hazard. Toxic Radioact. Waste Manage. 14 (2): 124–131. https://doi.org/10.1061/(ASCE)HZ.1944-8376.0000022.
Camargo, F. P., P. F. d. Prado, P. S. Tonello, A. C. A. Dos Santos, and I. C. S. Duarte. 2018. “Bioleaching of toxic metals from sewage sludge by co-inoculation of Acidithiobacillus and the biosurfactant-producing yeast Meyerozyma guilliermondii.” J. Environ. Manage. 211: 28–35. https://doi.org/10.1016/j.jenvman.2018.01.045.
Cameselle, C., and S. Gouveia. 2020. “Removal of multiple metallic species from sludge by electromigration.” J. Hazard. Toxic Radioact. Waste 24 (1): 04019030. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000470.
Chen, S. Y., and W. H. Chen. 2013. “Thermophilic bioleaching of heavy metals from waste sludge using response surface methodology.” J. Environ. Sci. Health, Part A 48 (9): 1094–1104. https://doi.org/10.1080/10934529.2013.774655.
Chen, S.-Y., and J.-G. Lin. 2004. “Bioleaching of heavy metals from livestock sludge by indigenous sulfur-oxidizing bacteria: Effects of sludge solids concentration.” Chemosphere 54 (3): 283–289. https://doi.org/10.1016/j.chemosphere.2003.08.009.
Couillard, D., and S. Zhu. 1992. “Bacterial leaching of heavy metals from sewage sludge for agricultural application.” Water Air Soil Pollut. 63 (1–2): 67–80. https://doi.org/10.1007/BF00475622.
De La Rochebrochard, S., E. Naffrechoux, P. Drogui, G. Mercier, and J. F. Blais. 2013. “Low frequency ultrasound-assisted leaching of sewage sludge for toxic metal removal, dewatering and fertilizing properties preservation.” Ultrason. Sonochem. 20 (1): 109–117. https://doi.org/10.1016/j.ultsonch.2012.08.001.
Ebbers, B., L. M. Ottosen, and P. E. Jensen. 2015. “Electrodialytic treatment of municipal wastewater and sludge for the removal of heavy metals and recovery of phosphorus.” Electrochim. Acta 181: 90–99. https://doi.org/10.1016/j.electacta.2015.04.097.
Fonti, V., A. Dell’Anno, and F. Beolchini. 2016. “Does bioleaching represent a biotechnological strategy for remediation of contaminated sediments?” Sci. Total Environ. 563–564: 302–319. https://doi.org/10.1016/j.scitotenv.2016.04.094.
Fytili, D., and A. Zabaniotou. 2008. “Utilization of sewage sludge in EU application of old and new methods—A review.” Renewable Sustainable Energy Rev. 12 (1): 116–140. https://doi.org/10.1016/j.rser.2006.05.014.
Gao, J., Q. Luo, C. Zhang, B. Li, and L. Meng. 2013. “Enhanced electrokinetic removal of cadmium from sludge using a coupled catholyte circulation system with multilayer of anion exchange resin.” Chem. Eng. J. 234: 1–8. https://doi.org/10.1016/j.cej.2013.08.019.
Ghavidel, A., S. Naji Rad, H. A. Alikhani, M. Sharari, and A. Ghanbari. 2018. “Bioleaching of heavy metals from sewage sludge, direct action of Acidithiobacillus ferrooxidans or only the impact of pH?” J. Mater. Cycles Waste Manage. 20 (2): 1179–1187. https://doi.org/10.1007/s10163-017-0680-7.
Gheju, M., R. Pode, and F. Manea. 2011. “Comparative heavy metal chemical extraction from anaerobically digested biosolids.” Hydrometallurgy 108 (1–2): 115–121. https://doi.org/10.1016/j.hydromet.2011.03.006.
Gu, T., S. O. Rastegar, S. M. Mousavi, M. Li, and M. Zhou. 2018. “Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge.” Bioresour. Technol. 261: 428–440. https://doi.org/10.1016/j.biortech.2018.04.033.
Gu, X. Y., J. W.-C. Wong, and R. D. Tyagi. 2017. “Bioleaching of heavy metals from sewage sludge for land application.” In Current developments in biotechnology and bioengineering, edited by J. W.-C. Wong, R. D. Tyagi, and A. Pandey, 241–265. Amsterdam, The Netherlands: Elsevier.
Gupta, P., T. R. Sreekrishnan, and S. Z. Ahammad. 2015. “Acclimatization of anaerobic sludge to treat Cr (VI) and 4-CP present in industrial effluents and their effect on microbial communities.” J. Hazard. Toxic Radioact. Waste 19 (4): 04015007. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000279.
Järup, L. 2003. “Hazards of heavy metal contamination.” Br. Med. Bull. 68: 167–182. https://doi.org/10.1093/bmb/ldg032.
Kumar, M., A. Gogoi, D. Kumari, R. Borah, P. Das, P. Mazumder, and V. K. Tyagi. 2017. “Review of perspective, problems, challenges, and future scenario of metal contamination in the urban environment.” J. Hazard. Toxic Radioact. Waste 21 (4): 04017007. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000351.
Li, H., M. Ye, L. Zheng, Y. Xu, S. Sun, Q. Du, Y. Zhong, S. Ye, and D. Zhang. 2018. “Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species.” Water Sci. Technol. 2017 (2): 390–403. https://doi.org/10.2166/wst.2018.167.
Li, X., Y. Peng, Y. He, S. Wang, S. Guo, and L. Li. 2017. “Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability.” Bioresour. Technol. 227: 398–403. https://doi.org/10.1016/j.biortech.2016.12.069.
Liu, Y. G., M. Zhou, G. M. Zeng, X. Li, W. H. Xu, and T. Fan. 2007. “Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching.” J. Hazard. Mater. 141 (1): 202–208. https://doi.org/10.1016/j.jhazmat.2006.06.113.
Lu, Q., Z. L. He, and P. J. Stoffella. 2012. “Land application of biosolids in the USA: A review.” Appl. Environ. Soil Sci. 2012: 201462. https://doi.org/10.1155/2012/201462.
Ma, D., M. Su, J. Qian, Q. Wang, F. Meng, X. Ge, Y. Ye, and C. Song. 2020. “Heavy metal removal from sewage sludge under citric acid and electroosmotic leaching processes.” Sep. Purif. Technol. 242: 116822. https://doi.org/10.1016/j.seppur.2020.116822.
Mao, C., Y. Feng, X. Wang, and G. Ren. 2015. “Review on research achievements of biogas from anaerobic digestion.” Renewable Sustainable Energy Rev. 45: 540–555. https://doi.org/10.1016/j.rser.2015.02.032.
Mehrotra, A., K. Kundu, and T. R. Sreekrishnan. 2016. “Decontamination of heavy metal laden sewage sludge with simultaneous solids reduction using thermophilic sulfur and ferrous oxidizing species.” J. Environ. Manage. 167: 228–235. https://doi.org/10.1016/j.jenvman.2015.11.004.
Metcalf and Eddy. 2003. Wastewater engineering: Treatment and reuse, edited by G. Tchobanoglous, F. L. Burton, and H. D. Stensel. New Delhi, India: Tata McGraw-Hill.
Moghal, A. A. B., M. Ashfaq, M. A. Al-Shamrani, and A. Al-Mahbashi. 2020. “Effect of heavy metal contamination on the compressibility and strength characteristics of chemically modified semiarid soils.” J. Hazard. Toxic Radioact. Waste 24 (4): 04020029. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000527.
Nguyen, L. N., A. Q. Nguyen, and L. D. Nghiem. 2019. “Microbial community in anaerobic digestion system: Progression in microbial ecology.” In Water and wastewater treatment technologies, edited by X. T. Bui, C. Chiemchaisri, T. Fujioka, and S. Varjani, 331–355. Singapore: Springer. https://doi.org/10.1007/978-981-13-3259-3_15.
Ozores-Hampton, M., P. A. Stansly, and T. A. Obreza. 2005. “Heavy metal accumulation in a sandy soil and in pepper fruit following long-term application of organic amendments.” Compost Sci. Util. 13 (1): 60–64. https://doi.org/10.1080/1065657X.2005.10702218.
Parkin, G. F., and W. F. Owen. 1986. “Fundamentals of anaerobic digestion of wastewater sludges.” J. Environ. Eng. 112 (5): 867–920. https://doi.org/10.1061/(ASCE)0733-9372(1986)112:5(867).
Pathak, A., M. G. Dastidar, and T. R. Sreekrishnan. 2009. “Bioleaching of heavy metals from sewage sludge: A review.” J. Environ. Manage. 90 (8): 2343–2353. https://doi.org/10.1016/j.jenvman.2008.11.005.
Prakash, K. L., H. Singh, T. M. Santhosh Kumar, and R. K. Somashekar. 2018. “Assessment of heavy metals in municipal sewage sludge: A case study of Kadubeesanahalli sewage treatment plant, Bangalore, India.” Int. J. Adv. Res. Eng. Technol. 9 (3): 266–275.
Rastegar, S. O., S. M. Mousavi, M. Rezaei, and S. A. Shojaosadati. 2014. “Statistical evaluation and optimization of effective parameters in bioleaching of metals from molybdenite concentrate using Acidianus brierleyi.” J. Ind. Eng. Chem. 20 (5): 3096–3101. https://doi.org/10.1016/j.jiec.2013.11.049.
Ravi, P. P., J. Lindner, H. Oechsner, and A. Lemmer. 2018. “Effects of target pH-value on organic acids and methane production in two-stage anaerobic digestion of vegetable waste.” Bioresour. Technol. 247: 96–102.
Saha, S., B. N. Saha, G. C. Hazra, S. Pati, B. Pal, D. Kundu, A. G. Bag, N. Chatterjee, and K. Batabyal. 2018. “Assessing the suitability of sewage-sludge produced in Kolkata, India for their agricultural use.” Proc. Indian Natl. Sci. Acad. 84 (3): 781–792. https://doi.org/10.16943/ptinsa/2018/49410.
Saha, S., B. N. Saha, S. Pati, B. Pal, and G. C. Hazra. 2017. “Agricultural use of sewage sludge in India: Benefits and potential risk of heavy metals contamination and possible remediation options—A review.” Int. J. Environ. Technol. Manage. 20 (3–4): 183–199. https://doi.org/10.1504/IJETM.2017.089645.
Shaheen, S. M., A. A. Balbaa, A. M. Khatab, V. Antoniadis, J. Wang, and J. Rinklebe. 2019. “Biowastes alone and combined with sulfur affect the phytoavailability of Cu and Zn to barnyard grass and sorghum in a fluvial alkaline soil under dry and wet conditions.” J. Environ. Manage. 234: 440–447. https://doi.org/10.1016/j.jenvman.2018.12.106.
Shi, W., C. Liu, D. Ding, Z. Lei, Y. Yang, C. Feng, and Z. Zhang. 2013. “Immobilization of heavy metals in sewage sludge by using subcritical water technology.” Bioresour. Technol. 137: 18–24. https://doi.org/10.1016/j.biortech.2013.03.106.
Stylianou, M. A., D. Kollia, K. J. Haralambous, V. J. Inglezakis, K. G. Moustakas, and M. D. Loizidou. 2007. “Effect of acid treatment on the removal of heavy metals from sewage sludge.” Desalination 215 (1–3): 73–81. https://doi.org/10.1016/j.desal.2006.11.015.
Tyagi, R. D., D. Couillard, and F. Tran. 1988. “Heavy metals removal from anaerobically digested sludge by chemical and microbiological methods.” Environ. Pollut. 50 (4): 295–316. https://doi.org/10.1016/0269-7491(88)90194-7.
Vera, M., A. Schippers, and W. Sand. 2013. “Progress in bioleaching: Fundamentals and mechanisms of bacterial metal sulfide oxidation—Part A.” Appl. Microbiol. Biotechnol. 97 (17): 7529–7541. https://doi.org/10.1007/s00253-013-4954-2.
Villar, L. D., and O. Garcia Jr. 2002. “Solubilization profiles of metal ions from bioleaching of sewage sludge as a function of pH.” Biotechnol. Lett 24 (8): 611–614. https://doi.org/10.1023/A:1015010417315.
Wang, M. J. 1997. “Land application of sewage sludge in China.” Sci. Total Environ. 197 (1–3): 149–160. https://doi.org/10.1016/S0048-9697(97)05426-0.
Yesil, H., and A. E. Tugtas. 2019. “Removal of heavy metals from leaching effluents of sewage sludge via supported liquid membranes.” Sci. Total Environ. 693: 133608. https://doi.org/10.1016/j.scitotenv.2019.133608.
Zeng, J., M. Gou, Y. Q. Tang, G. Y. Li, Z. Y. Sun, and K. Kida. 2016. “Effective bioleaching of chromium in tannery sludge with an enriched sulfur-oxidizing bacterial community.” Bioresour Technol. 218: 859–866. https://doi.org/10.1016/j.biortech.2016.07.051.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Jul 4, 2020
Accepted: Oct 21, 2020
Published online: Dec 10, 2020
Published in print: Apr 1, 2021
Discussion open until: May 10, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ashish K. Lohar [email protected]
Ph.D. Scholar, Dept. of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016. India (corresponding author). Email: [email protected]
T. R. Sreekrishnan [email protected]
Professor, Dept. of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016. India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share