Technical Papers
Dec 9, 2020

Characterization of Variability of Unit Weight and Shear Parameters of Municipal Solid Waste

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 2

Abstract

The safety and stability of municipal solid waste (MSW) slopes are governed by unit weight (γ), cohesion (c), and friction angle (ϕ) of the MSW. Variability associated with the unit weight, cohesion, and friction angle of MSW is a major problem in the design of landfills because it negatively affects the performance of the slope. Variability associated with these properties may trigger catastrophic slope failures. The reported studies on the reliability-based design of MSW landfills adopted either Gaussian or lognormal distributions based on a reasonable approximation. The limitations are apparent when a coefficient of variation (COV) is higher. The accuracy of reliability-based designs depends on the selection of best-fit continuous and extreme value distributions (such as Gumbel and Weibull) that can model a high degree of variability precisely. The present study has undertaken to propose a suitable statistical model that gives a better representation of variability by optimizing the statistical parameters. A high degree of variability associated with the unit weight, cohesion, and friction angle of MSW is also investigated. A novel approach is proposed to determine reliable continuous probability density functions (PDFs) that can be fitted to the database consisting of 184 sample points collected from the most comprehensive experimental studies reported in the literature. The best-fit PDFs are recommended by optimizing the mean and standard deviation such that errors associated with quantiles (Q­­–Q), percentiles (P–P), and cumulative distribution functions (CDFs) are as minimum as possible. This study signifies the selection of optimized PDFs for the representation of parameter variability, and it is proved that the probability of failure is either underestimated or overestimated considerably when other conventional PDFs are chosen. The recommended mean, COV, and PDF can be useful in the reliability-based design of engineered MSW landfills and for judging the performance of existing MSW slopes.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Financial support for this project was provided by the Science and Engineering Research Board (SERB), which is a statutory body of the Department of Science and Technology, Government of India (Grant No. SR/FTP/ETA-026/2012), and partially by the Government of India, Ministry of Human Resource Development.

Notation

The following symbols are used in this paper:
c
cohesion of MSW (kPa);
fX(x)
probability density function;
g(x)
performance function;
h
height of the landfill slope (m);
PfMP
probability of failure of MSW slope;
Xi
generated random variables;
Xi*
experimentally reported variable;
x
vector containing generated random values;
x*
vector of collected values;
α
slope angle of the landfill with horizontal (°);
βMP
reliability index against slope failure-Morgenstern price method;
γ
unit weight of MSW (kN/m3);
ɛCDF
CDF error function;
ɛPP
percentile error function;
ɛQQ
quantile error function;
μi
mean of the random variable;
σi
standard deviation of the variable; and
ϕ
internal friction angle of MSW (°).

References

Anbazhagan, P., G. L. S. Babu, P. Lakshmikanthan, and K. S. VivekAnand. 2016. “Seismic characterization and dynamic site response of a municipal solid waste landfill in Bangalore, India.” Waste Manage. Res. 34 (3): 205–213. https://doi.org/10.1177/0734242X15622814.
Augello, A. J., N. Matasovic, J. D. Bray, E. Kavazanjian, and R. B. Seed. 1995. “Evaluation of solid waste landfill performance during the Northridge earthquake.” In Earthquake Design and Performance of Solid Waste Landfills, Geotechnical Special Publication 54, 17–50. Reston, VA: ASCE.
Babu, G. L. S., P. Lakshmikanthan, and L. G. Santhosh. 2015. “Shear strength characteristics of mechanically biologically treated municipal solid waste (MBT-MSW) from Bangalore.” Waste Manage. (Oxford) 39: 63–70. https://doi.org/10.1016/j.wasman.2015.02.013.
Bareither, C. A., C. H. Benson, and T. B. Edil. 2012. “Compression behavior of municipal solid waste: Immediate compression.” J. Geotech. Geoenviron. Eng. 138 (9): 1047–1062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000672.
Bray, J. D., D. Zekkos, E. Kavazanjian, G. A. Athanasopoulos, and M. F. Riemer. 2009. “Shear strength of municipal solid waste.” J. Geotech. Geoenviron. Eng. 135 (6): 709–722. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000063.
Breitmeyer, R. J., C. H. Benson, and B. Tuncer. 2019. “Effects of compression and decomposition on saturated hydraulic conductivity of municipal solid waste in bioreactor landfills.” J. Geotech. Geoenviron. Eng. 145 (4): 04019011. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002026.
Caicedo, B., L. Yamin, E. Giraldo, and O. Coronado. 2002. “Geomechanical properties of municipal solid waste in Dona Juana sanitary landfill.” In Vol. 1 of Proc., 4th Int. Congress on Environmental Geotechnics, 177–182. Boca Raton, FL: CRC Press.
Campbell, D. J. V. 1982. “Absorptive capacity of refuse: Harwell research.” In Proc., Second Harwell Landfill Symposium on Landfill Leachate. Harwell, UK: ETSU, Harwell Laboratories.
Castelli, F., and V. Lentini. 2017. “Dynamic characterization of municipal solid waste by in situ and laboratory tests.” J. Geotech. Geoenviron. Eng. 143 (5): 06017002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001641.
Chen, Y., H. Ke, D. G. Fredlund, L. Zhan, and Y. Xie. 2010. “Secondary compression of municipal solid wastes and a compression model for predicting settlement of municipal solid waste landfills.” J. Geotech. Geoenviron. Eng. 136 (5): 706–717. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000273.
Chen, Y. M., T. L. T. Zhan, H. Y. Wei, and H. Ke. 2009. “Aging and compressibility of municipal solid wastes.” Waste Manage. (Oxford) 29 (1): 86–95. https://doi.org/10.1016/j.wasman.2008.02.024.
Cowland, J. W., K. Y. Tang, and J. Gabay. 1993. “Density and strength properties of Hong Kong refuse.” In Vol. 2 of Proc., Fourth Int. Landfill Symposium, 1433–1446. Sardinia, Italy: CISA, Environmental Sanitary Engineering Centre.
Dai, Z., Y. Huang, F. Jiang, and Y. Huang. 2016. “Modeling the flow behavior of a simulated municipal solid waste.” Bull. Eng. Geol. Environ. 75 (1): 275–291. https://doi.org/10.1007/s10064-015-0735-8.
Dixon, N., D. R. V. Jones, and G. J. Fowmes. 2006. “Interface shear strength variability and its use in reliability-based landfill stability analysis.” Geosynth. Int. 13 (1): 1–14. https://doi.org/10.1680/gein.2006.13.1.1.
Dixon, N., U. Langer, and P. Gotteland. 2008. “Classification and mechanical behavior relationships for municipal solid waste: Study using synthetic wastes.” J. Geotech. Geoenviron. Eng. 134 (1): 79–90. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:1(79).
Duncan, J. M. 2000. “Factors of safety and reliability in geotechnical engineering.” J. Geotech. Geoenviron. Eng. 126 (4): 307–316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).
Eid, H. T., T. D. Stark, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure-I: Waste and foundation soil properties.” J. Geotech. Geoenviron. Eng. 126 (5): 397–407. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(397).
Fassett, J. B., G. A. Leonardo, and P. C. Repetto. 1994. “Geotechnical properties of municipal solid waste and their use in landfill design.” In Proc., Waste Tech '94 Conference, National Solid Waste Management Association., Charleston, SC: Np.
Faur, K. B. 2014. “Statistical analysis of shear strength parameters of municipal solid wastes by slope stability analysis.” Geosci. Eng. 3 (5): 145–153.
Feng, S. J., K. W. Gao, Y. X. Chen, Y. Li, L. M. Zhang, and H. X. Chen. 2017. “Geotechnical properties of municipal solid waste at Laogang Landfill, China.” Waste Manage. (Oxford) 63: 354–365. https://doi.org/10.1016/j.wasman.2016.09.016.
Gabr, M. A., M. S. Hossain, and M. A. Barlaz. 2007. “Shear strength parameters of municipal solid waste with leachate recirculation.” J. Geotech. Geoenviron. Eng. 133 (4): 478–484. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(478).
Gabr, M. A., and S. N. Valero. 1995. “Geotechnical properties of municipal solid waste.” Geotech. Test. J. 18 (2): 241–251. https://doi.org/10.1520/GTJ10324J.
Gomes, C., M. L. Lopes, and J. P. V. Oliveira. 2013. “Municipal solid waste shear strength parameters defined through laboratorial and in situ tests.” J. Air Waste Manage. Assoc. 63 (11): 1352–1368. https://doi.org/10.1080/10962247.2013.813876.
Gourc, J. P., F. Olivier, S. Thomas, L. Chatelet, P. Denecheau, and M. L. Munoz. 2001. “Monitoring of waste settlements on five landfills: Comparison of the efficiency of different devices.” In Proc., Sardinia ‘01, 8th Int. Waste Management and Landfill Symp., 515–524. Sardinia, Italy: CISA Environmental Sanitary Engineering Centre.
Greco, D. O., and C. Oggeri. 1993. “Geotechnical parameters of sanitary wastes.” In Proc., Sardinia ‘93, 4th Int. Landfill Symp., 1421–1431. Sardinia, Italy: CISA Environmental Sanitary Engineering Centre.
Grisolia, M., Q. Napoleoni, and G. Tancredi. 1995. “The use of triaxial tests for the mechanical characterization of MSW.” In Proc., Sardinia ‘95, 5th Int. Landfill Symp., 703–710. Sardinia, Italy: CISA, Environmental Sanitary Engineering Centre.
Hossain, M. S., and M. A. Gabr. 2009. “The effect of shredding and test apparatus size on compressibility and strength parameters of degraded municipal solid waste.” Waste Manage. (Oxford) 29 (9): 2417–2424. https://doi.org/10.1016/j.wasman.2009.03.024.
Jahanfar, A., B. Gharabaghi, E. A. McBean, and B. K. Dubey. 2017. “Municipal solid waste slope stability modeling: A probabilistic approach.” J. Geotech. Geoenviron. Eng. 143 (8): 04017035. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001704.
Jessberger, H. L. 1994. “Geotechnical aspects of landfill design and construction, Part 2: Materials parameters and test methods.” Geotech. Eng. J. 107 (2): 105–113. https://doi.org/10.1680/igeng.1994.26378.
Jessberger, H. L., O. Syllwasschy, and R. Kockel. 1995. “Investigation of waste body behaviour and waste structure interaction.” In Proc., 5th Int. Waste Management and Landfill Symp., Environmental Sanitary Engineering Centre, 731–743. Santa Margherita di Pula, Italy: Np.
Kavazanjian, E. 2001. “Mechanical properties of municipal solid waste.” In Proc., Sardinia 2001, 8th Int. Landfill Symp., 415–424. Sardinia, Italy: CISA, Environmental Sanitary Engineering Centre.
Kavazanjian, E., N. Matasovic, R. Bonaparte, and G. R. Schmertmann. 1995. “Evaluation of MSW properties for seismic analyses.” In Geo-environment 2000, Geotechnical Special Publication 46, 1126–1141. Reston, VA: ASCE.
Kavazanjian, E., N. Matasovic, K. H. Stokoe, and J. D. Bray. 1996. “In situ shear wave velocity of solid waste from surface wave measurements.” In Proc., Int. Congress on Environmental Geotechnics, 97–102. London, UK: Balkema.
Keramati, M., M. Shahedifar, M. H. Aminfar, and H. Alagipuor. 2020. “Evaluation the shear strength behavior of aged MSW using large scale in situ direct shear test: A case of Tabriz Landfill.” Int. J. Civ. Eng. 18 (7): 717–733. https://doi.org/10.1007/s40999-020-00499-3.
Konig, D., and H. L. Jessberger. 1997. Waste mechanics, 35–76. Report of the ISSMFE Technical Committee TC5 on Environmental Geotechnics. Universitätsstraße, Bochum: Ruhr-Universität Bochum.
Landva, A. O., and J. I. Clark. 1986. “Geotechnical testing of waste fill.” In Proc., 39th Canadian Geotechnical Conf., 371–385. Canadian Geotechnical Society, Ottawa Geotechnical Group.
Landva, A. O., and J. I. Clark. 1990. “Geotechnics of waste fill.” In Geotechnics of waste fills—Theory and practice, ASTM STP 1070, edited by A. Landva and G. Knowles, 86–113. West Conshohocken, PA: ASTM.
Landva, A. O., W. R. Weisner, and W. J. Burwash. 1984. “Geotechnical engineering and refuse landfills.” In Proc., 6th Int. Con. on waste management, Canada.
Lumb, P. 1966. “The variability of natural soils.” Can. Geotech. J. 3 (2): 74–97. https://doi.org/10.1139/t66-009.
Machado, S. L., M. F. Carvalho, J. C. F. Nascimento, and K. A. Dourado. 2006. “Aging effect on MSW mechanical behaviour.” In Vol. 2 of Proc., 5th Int. Congress on Environmental Geotechnics, 1439–1446. London: Thomas Telford.
Machado, S. L., M. F. Carvalho, and O. M. Vilar. 2002. “Constitutive model for municipal solid waste.” J. Geotech. Geoenviron. Eng. 128 (11): 940–951. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:11(940).
Matasovic, N., and E. Kavazanjian. 1998. “Cyclic characterization of OII landfill solid waste.” J. Geotech. Geoenviron. Eng. 124 (3): 197–210. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:3(197).
Mazzucato, A., P. Simonini, and S. Colombo. 1999. “Analysis of block slide in a MSW landfill.” In Proc., 7th Int. Landfill Symp., 537–544. Sardinia, Italy: CISA, Environmental Sanitary Engineering Centre.
Nawagamuwa, U. P., R. Rajeevan, and W. U. Tharanga. 2016. “Study on the strength characteristics of MSW in Sri Lanka.” JGS 2 (52): 1806–1809.
Natarajan, T. K., and E. Rao. 1977. “Utilization of environmental wastes in highway engineering practice.” In Proc., Specialty Session on Geotechnical Engineering and Environmental Control, 9th ICSWFE. Tokyo, Japan: Np.
Naveen, B. P., P. V. Sivapullaiah, and T. G. Sitharam. 2014. “Compressibility and shear strength of dumped municipal solid waste.” J. Solid Waste Technol. Manage. 40 (4): 327–334. https://doi.org/10.5276/JSWTM.2014.327.
Oweis, I. S., and R. Khera. 1986. “Criteria for geotechnical construction on sanitary landfills.” In Vol. 1 of Symp. on Environmental Geotechnology, 205–223. Envo Publishing Company.
Owusu-Nimo, F., S. Oduro-Kwarteng, H. Essandoh, F. Wayo, and M. Shamudeen. 2019. “Characteristics and management of landfill solid waste in Kumasi, Ghana.” Sci. Afr. 3: e00052. https://doi.org/10.1016/j.sciaf.2019.e00052.
Pacey, J. G. 1982. “Insights to enhanced landfill gas generation.” In Vol. 1 of Proc., 6th Int. Landfill Symp., 359–368. Cagliari, Italy: Np.
Pagotto, A., and P. Rimoldi. 1987. “Design and construction of a geogrid reinforced embankment over waste material.” In Proc., Geosynthetics’87. New Orleans. LA: Np.
Pelky, S. A., A. J. Valsangar, and A. O. Landva. 2001. “Shear displacement of municipal solid waste and its major constituents.” Geotech. Test. J. 24 (4): 381–390. https://doi.org/10.1520/GTJ11135J.
Pfeffer, J. T. 1992. Solid waste management engineering. Englewood Cliffs, NJ: Prentice-Hall.
Pulat, H. F., and Y. Yukselen-Aksoy. 2019. “Compressibility and shear strength behaviour of fresh and aged municipal solid wastes.” Environ. Geotech. in press. https://doi.org/10.1680/jenge.18.00019.
Rajesh, S. 2018. “Comprehensive characteristics of fresh and processed MSW generated in Kanpur City.” In Geotechnics for natural and engineered sustainable technologies, developments in geotechnical engineering, edited by A. Murali Krishna, A. Dey, and S. Sreedeep, 291–301. Singapore: Springer.
Ramaiah, B. J., and G. V. Ramana. 2017. “Study of stress–strain and volume change behavior of emplaced municipal solid waste using large-scale triaxial testing.” Waste Manage. (Oxford) 63: 366–379. https://doi.org/10.1016/j.wasman.2017.01.027.
Reddy, K. R., and J. E. Bogner. 2003. “Bioreactor landfill engineering for accelerated stabilization of municipal solid waste.” In Int. e-Conf. on Modern Trends in Foundation Engineering: Geotechnical Challenges and Solutions. Indian Institute of Technology Madras, India: Np.
Reddy, K. R., J. Gangathulasi, H. Hettiarachchi, and J. E. Bogner. 2008. “Geotechnical properties of municipal solid waste subjected to leachate recirculation.” In Geocongress 2008: Geotechnics of Waste Management and Remediation, Geotechnical Special Publication 177, edited by M. V. Khire, A. N. Alshawabkeh, and K. R. Reddy, 144–151. Reston, VA: ASCE.
Reddy, K. R., H. Hettiarachchi, J. Gangathulasi, and J. E. Bogner. 2011. “Geotechnical properties of municipal solid waste at different phases of biodegradation.” Waste Manage. (Oxford) 31 (11): 2275–2286. https://doi.org/10.1016/j.wasman.2011.06.002.
Reddy, K. R., H. Hettiarachchi, J. Gangathulasi, J. E. Bogner, and T. Lagier. 2009. “Geotechnical properties of synthetic municipal solid waste.” Int. J. Geotech. Eng. 3 (3): 429–438. https://doi.org/10.3328/IJGE.2009.03.03.429-438.
Richardson, G., and D. Reynolds. 1991. “Geosynthetic considerations in a landfill on compressible clays.” In Vol. 2 of Proc., Geosynthetics ‘91, 507–516. St. Paul, MN: Np.
Sargunan, A., N. Mallikarjun, and K. Ranapratap. 1986. “Geotechnical properties of refuse fills of Madras, India.” In Proc., Int. Symp. on Environmental Geotechnology 1986, 197–204. Bethlehem, PA: Np.
Siegel, R. A., R. J. Robertson, and D. G. Anderson. 1990. “Slope stability investigation at a landfill in Southern California.” In Geotechnics of waste fills—Theory and practice, ASTM STP 1070, edited by A. Landva and G. Knowles, 259–284. West Conshohocken, PA: ASTM.
Singh, M. K., J. S. Sharma, and I. R. Fleming. 2009. “Shear strength testing of intact and recompacted samples of municipal solid waste.” Can. Geotech. J. 46 (10): 1133–1145. https://doi.org/10.1139/T09-052.
Stark, T. D., B. H. T. Eid, W. D. Evans, and P. E. Sherry. 2000. “Municipal solid waste slope failure I I: Waste and foundation soil properties.” J. Geotech. Geoenviron. Eng. 126 (5): 408–419. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(408).
Stark, T. D., N. Huvaj-Sarihan, and G. Li. 2009. “Shear strength of municipal solid waste for stability analyses.” Environ. Geol. 57 (8): 1911–1923. https://doi.org/10.1007/s00254-008-1480-0.
Stoll, O. W. 1971. “Mechanical properties of milled refuse.” In Proc., ASCE National Water Resources Engineering Meeting, Phoenix, 11–15. New York: ASCE.
Vilar, O. M., and M. F. Carvalho. 2002. “Shear strength properties of municipal solid waste.” In Proc., 4th Int. Conf. on Environmental Geotechnics, 59–64. Rio de Janeiro, Brazil: Np.
Vilar, O. M., and M. F. Carvalho. 2004. “Mechanical properties of municipal solid waste.” J. Test. Eval. 32 (6): 11945. https://doi.org/10.1520/JTE11945.
Withiam, J. L., P. A. Tarvin, T. D. Bushell, R. E. Snow, and H. W. German. 1995. “Prediction and performance of municipal landfill slope.” In Geoenvironment 2000, Geotechnical Special Publication 46, 1005–1019. Reston, VA: ASCE.
Xiang-rong, Z., J. Jian-min, F. Peng-fei. 2003. “Geotechnical behavior of the MSW in Tianziling Landfill.” J. Zhejiang Univ. Sci. 4 (3): 324–330.
Zekkos, D., G. A. Athanasopoulos, J. D. Bray, A. Theodoratos, and A. Grizi. 2010. “Large-scale direct shear testing of municipal solid waste.” J. Waste Manag. 30: 1544–1555.
Zekkos, D., J. D. Bray, E. Kavazanjian, N. Matasovic, E. M. Rathje, M. F. Riemer, and K. H. Stokoe. 2006. “Unit weight of municipal solid waste.” J. Geotech. Geoenviron. Eng. 132 (10): 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).
Zekkos, D., J. D. Bray, E. Kavazanjian, M. Riemer, N. Matasovic, K. H. Stokoe, and E. Rathje. 2005. “A framework for developing the unit weight profile of Municipal Solid Waste.” In Proc., 10th Int. Waste Management and Landfill Symp., 3–7. Sardinia, Italy: CISA, Environmental Sanitary Engineering Centre.
Zekkos, D., J. D. Bray, and M. F. Riemer. 2008. “Shear modulus and material damping of municipal solid waste based on large-scale cyclic triaxial testing.” Can. Geotech. J. 45 (1): 45–58. https://doi.org/10.1139/T07-069.
Zekkos, D., and X. Fei. 2016. “Comparison of constant load and constant volume shearing response in simple shear testing of municipal solid waste.” Waste Manag. 63: 380–392. https://doi.org/10.1016/j.wasman.2016.09.029.
Zekkos, D., M. Kabalan, S. M. Syal, M. Hambright, A. Sahadewa. 2013. “Geotechnical characterization of a municipal solid waste incineration ash from a Michigan monofill.” J. Waste Manag. 33 (2013): 1442–1450.
Zhan, T. L. T., Y. M. Chen, and W. A. Ling. 2008. “Shear strength characterization of municipal solid waste at the Suzhou landfill, China.” Eng. Geol. 37 (3–4): 97–111. https://doi.org/10.1016/j.enggeo.2007.11.006.
Zhan, L.T., X. B. Xu, Y. M. Chen, X. F. Ma, and J. W. Lan. 2015. “Dependence of gas collection efficiency on leachate level at wet municipal solid waste landfills and its improvement methods in China.” J. Geotech. Geoenviron. Eng. 141 (4): 04015002.
Zhang, L. L., J. Zhang, L. M. Zhang, and W. H. Tang. 2010. “Back analysis of slope failure with Markov chain Monte Carlo simulation.” Comput. Geotech. 37 (7–8): 905–912. https://doi.org/10.1016/j.compgeo.2010.07.009.
Zhang, Z., Y. Zhang, Y. Wang, H. Xu, W. Guo, D. Wu, and Y. Fang. 2018. “Physical and mechanical characteristics of MBT waste in China.” In Proc., Geo-Shanghai 2018 Int. Conf.: Geoenvironment and Geohazard 2018, 415–423. Berlin: Springer.
Zornberg, J. G., B. L. Jernigan, T. R. Sanglerat, and B. H. Cooley. 1999. “Retention of free liquids in landfills undergoing vertical expansion.” J. Geotech. Geoenviron. Eng. 125 (7): 583–594. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(583).
Zwanenburg, C., J. G. Knoeff, and M. W. A. Hounjet. 2007. “Geotechnical characterization of waste.” In Proc., 11th Int. Waste Management and Landfill Symp. Sardinia, Italy: CISA, Environmental Sanitary Engineering Centre.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 2April 2021

History

Received: Jun 3, 2020
Accepted: Oct 7, 2020
Published online: Dec 9, 2020
Published in print: Apr 1, 2021
Discussion open until: May 9, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil Engineering, SRM Univ., Amaravati, Guntur 522 502, India; Former Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Hyderabad 502 285, India. ORCID: https://orcid.org/0000-0002-8509-0820. Email: [email protected]
Associate Professor, Dept. of Civil Engineering, Indian Institute of Technology, Hyderabad 502 285, India (corresponding author). ORCID: https://orcid.org/0000-0003-1417-3650. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share