Abstract

Ruthenium (Ru) was impregnated with bismuth (Bi) to reduce the spectrum demand for the excitation of Ru to employ it as photocathode catalyst (Bi-Ru) in a microbial fuel cell (MFC) to ameliorate its power output in the presence of visible spectrum. The coulombic efficiency (CE) and power density of an MFC with Bi–Ru (MFC–BiRu) were 26.7 ± 0.8% and 10.0 ± 0.5 W/m3, respectively, which were two and six times higher than the control MFC that was operated without any cathode catalyst. Moreover, the CE and power density of the MFC–BiRu was 12.5% and 22% higher than the MFC that was operated with platinum (MFC–Pt) as the cathode catalyst (24.0 ± 0.7% and 8.2 ± 0.4 W/m3, respectively). Furthermore, the chemical oxygen demand (COD) removal efficiency and net energy recovery (NER) of MFC–BiRu were 91.8 ± 1.5% and 722 W-h/m3, which was almost 10% and 1.8 times higher than the MFC–Pt, respectively. Therefore, the results illustrated that Bi–Ru could be a plausible alternative to replace Pt as a cathode catalyst; therefore, rendering the field-scale application of MFC.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research work was supported by Department of Biotechnology, Government of India (BT/IN/INNO-INDIGO/28/MMG/2015-16) by providing financial assistance.

References

APHA. 1998. Standard methods for the examination of water and wastewater. Washington, DC: APHA.
Babu, V. J., R. S. R. Bhavatharini, and S. Ramakrishna. 2014. “Bi2O3 and BiOCl electrospun nanosheets and morphology-dependent photocatalytic properties.” RSC Adv. 4 (57): 29957–29963. https://doi.org/10.1039/C4RA03754E.
Behera, M., P. S. Jana, and M. M. Ghangrekar. 2010. “Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.” Bioresour. Technol. 101 (4): 1183–1189. https://doi.org/10.1016/j.biortech.2009.07.089.
Bhowmick, G. D., I. Chakraborty, M. M. Ghangrekar, and A. Mitra. 2019a. “TiO2/Activated carbon photo cathode catalyst exposed to ultraviolet radiation to enhance the efficacy of integrated microbial fuel cell-membrane bioreactor.” Bioresour. Technol. Rep. 7: 100303. https://doi.org/10.1016/j.biteb.2019.100303.
Bhowmick, G. D., S. Das, K. Adhikary, M. M. Ghangrekar, and A. Mitra. 2019b. “Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell.” Int. J. Hydrogen Energy 44 (39): 22218–22222. https://doi.org/10.1016/j.ijhydene.2019.06.063.
Bhowmick, G. D., S. Das, M. M. Ghangrekar, A. Mitra, and R. Banerjee. 2019c. “Improved wastewater treatment by combined system of microbial fuel cell with activated carbon/TiO2 cathode catalyst and membrane bioreactor.” J. Inst. Eng. 100 (4): 675–682. https://doi.org/10.1007/s40030-019-00406-7.
Bhowmick, G. D., S. Das, H. K. Verma, B. Neethu, and M. M. Ghangrekar. 2019d. “Improved performance of microbial fuel cell by using conductive ink printed cathode containing Co3O4 or Fe3O4.” Electrochim. Acta 310: 173–183. https://doi.org/10.1016/j.electacta.2019.04.127.
Bhowmick, G. D., E. Kibena-Põldsepp, L. Matisen, M. Merisalu, M. Kook, M. Kaärik, J. Leis, V. Sammelselg, M. M. Ghangrekar, and K. Tammeveski. 2019e. “Multi-walled carbon nanotube and carbide-derived carbon supported metal phthalocyanines as cathode catalysts for microbial fuel cell applications.” Sustainable Energy Fuels 3 (12): 3525–3537. https://doi.org/10.1039/C9SE00574A.
Bhowmick, G. D., B. Neethu, M. M. Ghangrekar, and R. Banerjee. 2020. “Improved performance of microbial fuel cell by in situ methanogenesis suppression while treating fish market wastewater.” Appl. Biochem. Biotechnol. in press. https://doi.org/10.1007/s12010-020-03366-y.
Bhowmick, G. D., M. T. Noori, I. Das, B. Neethu, M. M. Ghangrekar, and A. Mitra. 2018. “Bismuth doped TiO2 as an excellent photocathode catalyst to enhance the performance of microbial fuel cell.” Int. J. Hydrogen Energy 43 (15): 7501–7510. https://doi.org/10.1016/j.ijhydene.2018.02.188.
Biswas, A., S. Paul, and A. Banerjee. 2015. “Carbon nanodots, Ru nanodots and hybrid nanodots: Preparation and catalytic properties.” J. Mater. Chem. A 3 (29): 15074–15081. https://doi.org/10.1039/C5TA03355A.
Buasri, A., N. Chaiyut, V. Loryuenyong, C. Rodklum, T. Chaikwan, and N. Kumphan. 2012. “Continuous process for biodiesel production in packed bed reactor from waste frying oil using potassium hydroxide supported on Jatropha curcas fruit shell as solid catalyst.” Appl. Sci. 2 (4): 641–653. https://doi.org/10.3390/app2030641.
Chakraborty, I., S. Das, B. K. Dubey, and M. M. Ghangrekar. 2020. “Novel low cost proton exchange membrane made from sulphonated biochar for application in microbial fuel cells.” Mater. Chem. Phys. 239: 122025. https://doi.org/10.1016/j.matchemphys.2019.122025.
Chen, S., S. A. Patil, and U. Schröder. 2018. “A high-performance rotating graphite fiber brush air-cathode for microbial fuel cells.” Appl. Energy 211: 1089–1094. https://doi.org/10.1016/j.apenergy.2017.12.013.
Cheng, S., H. Liu, and B. E. Logan. 2006. “Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells.” Environ. Sci. Technol. 40 (1): 364–369. https://doi.org/10.1021/es0512071.
Cho, J. Y., O. J. Kwon, Y. K. Chung, J. S. Kim, W. S. Kim, K. J. Song, and C. Park. 2015. “Effect of trivalent Bi doping on the seebeck coefficient and electrical resistivity of Ca3Co4O9.” J. Electron. Mater. 44 (10): 3621–3626. https://doi.org/10.1007/s11664-015-3924-0.
Cornell, A. 1993. “Ruthenium dioxide as cathode material for hydrogen evolution in hydroxide and chlorate solutions.” J. Electrochem. Soc. 140 (11): 3123–3129. https://doi.org/10.1149/1.2220996.
da Silva, R. S., S. I. Gorelsky, E. S. Dodsworth, E. Tfouni, and A. B. P. Lever. 2000. “Synthesis, spectral and redox properties of tetraammine dioxolene ruthenium complexes.” J. Chem. Soc., Dalton Trans. 22: 4078–4088. https://doi.org/10.1039/b005488g.
Das, I., S. Das, R. Dixit, and M. M. Ghangrekar. 2020. “Goethite supplemented natural clay ceramic as an alternative proton exchange membrane and its application in microbial fuel cell.” Ionics 26: 3061–3072. https://doi.org/10.1007/s11581-020-03472-1.
Das, I., M. T. Noori, G. D. Bhowmick, and M. M. Ghangrekar. 2018a. “Synthesis of tungstate oxide/bismuth tungstate composite and application in microbial fuel cell as superior low-cost cathode catalyst than platinum.” J. Electrochem. Soc. 165 (13): G146–G153. https://doi.org/10.1149/2.0781813jes.
Das, S., P. Chatterjee, and M. M. Ghangrekar. 2018b. “Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.” Water Sci. Technol. 77 (5): 1293–1302. https://doi.org/10.2166/wst.2018.002.
Das, S., S. Das, I. Das, and M. M. Ghangrekar. 2019a. “Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review.” Mater. Sci. Energy Technol. 2 (3): 687–696. https://doi.org/10.1016/j.mset.2019.08.003.
Das, S., S. Das, and M. M. Ghangrekar. 2019b. “Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell.” Bioresour. Technol. 294: 122138. https://doi.org/10.1016/j.biortech.2019.122138.
Das, S., and M. M. Ghangrekar. 2019. “Tungsten oxide as electrocatalyst for improved power generation and wastewater treatment in microbial fuel cell.” Environ. Technol. 41 (9): 2546–2553. https://doi.org/10.1080/09593330.2019.1575477.
e Silva, T. C. d. A., G. D. Bhowmick, M. M. Ghangrekar, M. Wilhelm, and K. Rezwan. 2019. “SiOC-based polymer derived-ceramic porous anodes for microbial fuel cells.” Biochem. Eng. J. 148: 29–36. https://doi.org/10.1016/j.bej.2019.04.004.
Ge, Z., J. Li, L. Xiao, Y. Tong, and Z. He. 2014. “Recovery of electrical energy in microbial fuel cells.” Environ. Sci. Technol. Lett. 1 (2): 137–141. https://doi.org/10.1021/ez4000324.
Hsieh, S. H., G. J. Lee, C. Y. Chen, J. H. Chen, S. H. Ma, T. L. Horng, K. H. Chen, and J. J. Wu. 2012. “Synthesis of Pt doped Bi2O3/RuO2 photocatalysts for hydrogen production from water splitting using visible light.” J. Nanosci. Nanotechnol. 12 (7): 5930–5936. https://doi.org/10.1166/jnn.2012.6396.
Huo, X., D. J. Van Hoomissen, J. Liu, S. Vyas, and T. J. Strathmann. 2017. “Hydrogenation of aqueous nitrate and nitrite with ruthenium catalysts.” Appl. Catal., B 211: 188–198. https://doi.org/10.1016/j.apcatb.2017.04.045.
Jana, P. S., M. Behera, and M. M. Ghangrekar. 2010. “Performance comparison of up-flow microbial fuel cells fabricated using proton exchange membrane and earthen cylinder.” Int. J. Hydrogen Energy 35 (11): 5681–5686. https://doi.org/10.1016/j.ijhydene.2010.03.048.
Kannan, M. V., and G. Gnana kumar. 2016. “Current status, key challenges and its solutions in the design and development of graphene based ORR catalysts for the microbial fuel cell applications.” Biosens. Bioelectron. 77: 1208–1220. https://doi.org/10.1016/j.bios.2015.10.018.
Kannan, S. K., and M. Sundrarajan. 2015. “Green synthesis of ruthenium oxide nanoparticles: Characterization and its antibacterial activity.” Adv. Powder Technol. 26 (6): 1505–1511. https://doi.org/10.1016/j.apt.2015.08.009.
Kumar, P., A. Bansiwal, N. Labhsetwar, and S. L. Jain. 2015. “Visible light assisted photocatalytic reduction of CO2 using a graphene oxide supported heteroleptic ruthenium complex.” Green Chem. 17 (3): 1605–1609. https://doi.org/10.1039/C4GC01400F.
Lazkano, I., L. Nøstbakken, and M. Pelli. 2017. “From fossil fuels to renewables: The role of electricity storage.” Eur. Econ. Rev. 99: 113–129. https://doi.org/10.1016/j.euroecorev.2017.03.013.
Li, X., B. Hu, S. Suib, Y. Lei, and B. Li. 2011. “Electricity generation in continuous flow microbial fuel cells (MFCs) with manganese dioxide (MnO2) cathodes.” Biochem. Eng. J. 54 (1): 10–15. https://doi.org/10.1016/j.bej.2011.01.001.
Lofrano, G., and J. Brown. 2010. “Wastewater management through the ages: A history of mankind.” Sci. Total Environ. 408 (22): 5254–5264. https://doi.org/10.1016/j.scitotenv.2010.07.062.
Logan, B. E. 2008. Microbial fuel cells. Hoboken, NJ: John Wiley & Sons.
Lou, X., X. Hu, M. Zhang, S. A. T. Redfern, and J. F. Scott. 2005. “Mechanisms of nano-shorts in the electrical breakdown of ferroelectric thin films.” Integr. Ferroelectr. 73 (1): 93–98. https://doi.org/10.1080/10584580500413772.
Lu, A., Y. Li, S. Jin, H. Ding, C. Zeng, X. Wang, and C. Wang. 2010. “Microbial fuel cell equipped with a photocatalytic rutile-coated cathode.” Energy Fuels 24 (2): 1184–1190. https://doi.org/10.1021/ef901053j.
Nam, J. Y., C. Moon, E. Jeong, W. T. Lee, H. S. Shin, and H. W. Kim. 2013. “Optimal metal dose of alternative cathode catalyst considering organic substances in single chamber microbial fuel cells.” Environ. Eng. Res. 18 (3): 145–150. https://doi.org/10.4491/eer.2013.18.3.145.
Natarajan, T. S., K. Natarajan, H. C. Bajaj, and R. J. Tayade. 2013. “Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye.” J. Nanopart. Res. 15 (5): 1669. https://doi.org/10.1007/s11051-013-1669-3.
Neethu, B., G. D. Bhowmick, and M. M. Ghangrekar. 2018. “Enhancement of bioelectricity generation and algal productivity in microbial carbon-capture cell using low cost coconut shell as membrane separator.” Biochem. Eng. J. 133: 205–213. https://doi.org/10.1016/j.bej.2018.02.014.
Neethu, B., G. D. Bhowmick, and M. M. Ghangrekar. 2019. “A novel proton exchange membrane developed from clay and activated carbon derived from coconut shell for application in microbial fuel cell.” Biochem. Eng. J. 148: 170–177. https://doi.org/10.1016/j.bej.2019.05.011.
Neethu, B., G. D. Bhowmick, and M. M. Ghangrekar. 2020. “Improving performance of microbial fuel cell by enhanced bacterial-anode interaction using sludge immobilized beads with activated carbon.” Process Safety Environ. Prot. 143: 285–292. https://doi.org/10.1016/j.psep.2020.06.043.
Noori, M. T., G. D. Bhowmick, B. R. Tiwari, M. M. Ghangrekar, and C. K. Mukhrejee. 2018. “Application of low-cost Cu-Sn bimetal alloy as oxygen reduction reaction catalyst for improving performance of the microbial fuel cell.” MRS Adv. 3 (13): 663–668. https://doi.org/10.1557/adv.2018.163.
Noori, M. T., M. M. Ghangrekar, and C. K. Mukherjee. 2016. “V2O5 microflower decorated cathode for enhancing power generation in air-cathode microbial fuel cell treating fish market wastewater.” Int. J. Hydrogen Energy 41 (5): 3638–3645. https://doi.org/10.1016/j.ijhydene.2015.12.163.
Oliveira, V. B., M. Simões, L. F. Melo, and A. M. F. R. Pinto. 2013. “Overview on the developments of microbial fuel cells.” Biochem. Eng. J. 73: 53–64. https://doi.org/10.1016/j.bej.2013.01.012.
Pant, D., G. Van Bogaert, L. Diels, and K. Vanbroekhoven. 2010. “A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production.” Bioresour. Technol. 101 (6): 1533–1543. https://doi.org/10.1016/j.biortech.2009.10.017.
Pukhova, I. V., I. A. Kurzina, K. P. Savkin, O. A. Laput, and E. M. Oks. 2017. “Modification of polyvinyl alcohol surface properties by ion implantation.” Nucl. Instrum. Methods Phys. Res., Sect. B 399: 28–33. https://doi.org/10.1016/j.nimb.2017.03.103.
Rabaey, K., and R. A. Rozendal. 2010. “Microbial electrosynthesis—Revisiting the electrical route for microbial production.” Nat. Rev. Microbiol. 8 (10): 706–716. https://doi.org/10.1038/nrmicro2422.
Rodríguez-Reinoso, F. 1998. “The role of carbon materials in heterogeneous catalysis.” Carbon 36 (3): 159–175. https://doi.org/10.1016/S0008-6223(97)00173-5.
Santoro, C., C. Arbizzani, B. Erable, and I. Ieropoulos. 2017. “Microbial fuel cells: From fundamentals to applications. A review.” J. Power Sources 356: 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109.
Santoro, C., Y. Lei, B. Li, and P. Cristiani. 2012. “Power generation from wastewater using single chamber microbial fuel cells (MFCs) with platinum-free cathodes and pre-colonized anodes.” Biochem. Eng. J. 62: 8–16. https://doi.org/10.1016/j.bej.2011.12.006.
Sathe, S. M., G. D. Bhowmick, B. K. Dubey, and M. M. Ghangrekar. 2020. “Surfactant removal from wastewater using photo-cathode microbial fuel cell and laterite-based hybrid treatment system.” Bioprocess Biosyst. Eng. 43:2075–2084. https://doi.org/10.1007/s00449-020-02396-4.
Srivastav, A. L., P. K. Singh, C. H. Weng, and Y. C. Sharma. 2015. “Novel adsorbent hydrous bismuth oxide for the removal of nitrate from aqueous solutions.” J. Hazard. Toxic Radioac. Waste 19 (2): 04014028. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000235.
Su, C., Z. Lu, H. Zhao, H. Yang, and R. Chen. 2015. “Photoinduced switchable wettability of bismuth coating with hierarchical dendritic structure between superhydrophobicity and superhydrophilicity.” Appl. Surf. Sci. 353: 735–743. https://doi.org/10.1016/j.apsusc.2015.06.180.
Tayade, R. J., R. G. Kulkarni, and R. V. Jasra. 2006. “Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water.” Ind. Eng. Chem. Res. 45 (15): 5231–5238. https://doi.org/10.1021/ie051362o.
Tiwari, B. R., and M. M. Ghangrekar. 2015. “Enhancing electrogenesis by pretreatment of mixed anaerobic sludge to be used as inoculum in microbial fuel cells.” Energy Fuels 29 (5): 3518–3524. https://doi.org/10.1021/ef5028197.
Türk, K. K., et al. 2018. “Novel multi walled carbon nanotube based nitrogen impregnated Co and Fe cathode catalysts for improved microbial fuel cell performance.” Int. J. Hydrogen Energy 43 (51): 23027–23035. https://doi.org/10.1016/j.ijhydene.2018.10.143.
Wang, H., Y. Liu, H. Haouari, R. Craig, J. R. Lombardi, and D. M. Lindsay. 1997. “Raman spectra of ruthenium dimers.” J. Chem. Phys. 106 (16): 6534–6537. https://doi.org/10.1063/1.473651.
Wang, Y., Y. Wen, H. Ding, and Y. Shan. 2010. “Improved structural stability of titanium-doped β-Bi2O3 during visible-light-activated photocatalytic processes.” J. Mater. Sci. 45 (5): 1385–1392. https://doi.org/10.1007/s10853-009-4096-1.
Wang, Z., C. Cao, Y. Zheng, S. Chen, and F. Zhao. 2014. “Abiotic oxygen reduction reaction catalysts used in microbial fuel cells.” ChemElectroChem 1 (11): 1813–1821. https://doi.org/10.1002/celc.201402093.
Xie, Y., Z. Ma, H. Song, Z. A. Stoll, and P. Xu. 2017. “Melamine modified carbon felts anode with enhanced electrogenesis capacity toward microbial fuel cells.” J. Energy Chem. 26 (1): 81–86. https://doi.org/10.1016/j.jechem.2016.11.020.
Yuan, H., Y. Hou, I. M. Abu-Reesh, J. Chen, and Z. He. 2016. “Oxygen reduction reaction catalysts used in microbial fuel cells for energy-efficient wastewater treatment: A review.” Mater. Horiz. 3 (5): 382–401. https://doi.org/10.1039/C6MH00093B.
Zhang, C., H. Tao, Y. Dai, X. He, and K. Zhang. 2014. “Effect of solvent on Se-modified ruthenium/carbon catalyst for oxygen reduction.” Prog. Nat. Sci.: Mater. Int. 24 (6): 671–675. https://doi.org/10.1016/j.pnsc.2014.10.012.
Zhang, L., K. Xiong, S. Chen, L. Li, Z. Deng, and Z. Wei. 2015. “In situ growth of ruthenium oxide-nickel oxide nanorod arrays on nickel foam as a binder-free integrated cathode for hydrogen evolution.” J. Power Sources 274: 114–120. https://doi.org/10.1016/j.jpowsour.2014.10.038.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 1January 2021

History

Received: Jun 9, 2020
Accepted: Jul 30, 2020
Published online: Oct 23, 2020
Published in print: Jan 1, 2021
Discussion open until: Mar 23, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Scholar, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0002-7628-4746. Email: [email protected]
Ph.D. Scholar, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India. ORCID: https://orcid.org/0000-0001-7059-2070. Email: [email protected]
Koushik Adhikary [email protected]
Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. Email: [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology, Kharagpur 721302, India (corresponding author). ORCID: https://orcid.org/0000-0002-0691-9873. Email: [email protected]
Arunabha Mitra [email protected]
Professor, Dept. of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur 721302, India. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share