Technical Papers
Sep 8, 2020

Life Cycle Assessment of Microbial Electrosynthesis for Commercial Product Generation

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25, Issue 1

Abstract

Microbial electrosynthesis (MES) uses microbes and electricity to convert CO2 to high-grade chemicals alleviating greenhouse gas (GHG) emissions. Little is known on the environmental loads associated with the scale-up of the technology. Initially, the MES environmental impacts of synthesizing acetic, formic, or propionic acids, methanol, or ethanol were assessed using GaBi LCA software, and electricity produced 60% from fossil fuels. The results show that formic acid production had the lowest environmental impact in all eco-indicators due to the comparatively low energy requirements of its reactor and rectification unit. Second, three different formic acid production methods were compared with MES. Hydrolysis of methyl formate, the main conventional method was shown to be less environmentally harmful than the other three CO2 utilizing technologies analyzed when the electricity used was generated from fossil fuels except for the impact on climate change. Producing electricity from renewable sources (hydro, biogas, wind, and photovoltaic) made MES able to mitigate climate change with the lowest negative impact on the environment compared with others. Synthesis of products through MES using wind generated electricity could provide considerable benefits and should be considered when MES is industrially applied.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors are thankful to the Petroleum Technology Development Fund (Nigeria) for financial funding.

References

Andrushkevich, T. V., G. Y. Popova, E. V. Danilevich, I. A. Zolotarskii, V. B. Nakrokhin, T. A. Nikoro, S. I. Stompel, and V. N. Parmon. 2014. “A new gas-phase method for formic acid production: Tests on a pilot plant.” Catal. Ind. 6 (1): 17–24. https://doi.org/10.1134/S2070050414010024.
Bajracharya, S., S. Srikanth, G. Mohanakrishna, R. Zacharia, D. P. Strik, and D. Pant. 2017. “Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects.” J. Power Sources 356: 256–273. https://doi.org/10.1016/j.jpowsour.2017.04.024.
Bhown, A. S., and B. C. Freeman. 2011. “Analysis and status of post-combustion carbon dioxide capture technologies.” Environ. Sci. Technol. 45 (20): 8624–8632. https://doi.org/10.1021/es104291d.
Blanchet, E., F. Duquenne, Y. Rafrafi, L. Etcheverry, B. Erable, and A. Bergel. 2015. “Importance of the hydrogen route in up-scaling electrosynthesis for microbial CO2 reduction.” Energy Environ. Sci. 8 (12): 3731–3744. https://doi.org/10.1039/C5EE03088A.
Bulushev, D. A., and J. R. Ross. 2018. “Towards sustainable production of formic acid.” ChemSusChem 11 (5): 821–836. https://doi.org/10.1002/cssc.201702075.
Burnham, A., J. Han, C. E. Clark, M. Wang, J. B. Dunn, and I. Palou-Rivera. 2012. “Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.” Environ. Sci. Technol. 46 (2): 619–627. https://doi.org/10.1021/es201942m.
CEAE (Civil, Environmental and Architectural Engineering). 2014. “Redox half reaction reductions potentials and free energies.” Univ. of Colorado Boulder. Accessed July 20, 2016. http://ceae.colorado.edu/∼silverst/cven5534/REDOX%20HALF%20REACTIONS.pdf.
Cheng, S., D. Xing, D. F. Call, and B. E. Logan. 2009. “Direct biological conversion of electrical current into methane by electromethanogenesis.” Environ. Sci. Technol. 43 (10): 3953–3958. https://doi.org/10.1021/es803531g.
Chiranjeevi, P., M. Bulut, T. Breugelmans, S. A. Patil, and D. Pant. 2019. “Current trends in enzymatic electrosynthesis for CO2 reduction.” Curr. Opin. Green Sustainable Chem. 16: 65–70. https://doi.org/10.1016/j.cogsc.2019.02.007.
Christodoulou, X., T. Okoroafor, S. Parry, and S. B. Velasquez-Orta. 2017. “The use of carbon dioxide in microbial electrosynthesis: Advancements, sustainability and economic feasibility.” J. CO2 Util. 18: 390–399. https://doi.org/10.1016/j.jcou.2017.01.027.
Das, S., P. Chatterjee, and M. M. Ghangrekar. 2018. “Increasing methane content in biogas and simultaneous value added product recovery using microbial electrosynthesis.” Water Sci. Technol. 77 (5): 1293–1302. https://doi.org/10.2166/wst.2018.002.
Das, S., S. Das, I. Das, and M. M. Ghangrekar. 2019. “Application of bioelectrochemical systems for carbon dioxide sequestration and concomitant valuable recovery: A review.” Mater. Sci. Energy Technol. 2 (3): 687–696. https://doi.org/10.1016/j.mset.2019.08.003.
Das, S., and M. Ghangrekar. 2018. “Value added product recovery and carbon dioxide sequestration from biogas using microbial electrosynthesis.” Indian J. Exp. Biol. 56 (1): 470–478.
DBEIS (Department for Business, Energy and Industrial Strategy). 2017. Digest of United Kingdom energy statistics, 2017. London: DBEIS.
DBEIS (Department for Business, Energy and Industrial Strategy). 2019. Digest of United Kingdom energy statistics, 2019. London: DBEIS.
del Pilar Anzola Rojas, M., M. Zaiat, E. R. Gonzalez, H. De Wever, and D. Pant. 2018. “Effect of the electric supply interruption on a microbial electrosynthesis system converting inorganic carbon into acetate.” Bioresour. Technol. 266: 203–210. https://doi.org/10.1016/j.biortech.2018.06.074.
Endrődi, B., G. Bencsik, F. Darvas, R. Jones, K. Rajeshwar, and C. Janáky. 2017. “Continuous-flow electroreduction of carbon dioxide.” Prog. Energy Combust. Sci. 62: 133–154. https://doi.org/10.1016/j.pecs.2017.05.005.
Evangelisti, S., C. Tagliaferri, D. J. L. Brett, and P. Lettieri. 2017. “Life cycle assessment of a polymer electrolyte membrane fuel cell system for passenger vehicles.” J. Cleaner Prod. 142: 4339–4355. https://doi.org/10.1016/j.jclepro.2016.11.159.
Finn, C., S. Schnittger, L. J. Yellowlees, and J. B. Love. 2012. “Molecular approaches to the electrochemical reduction of carbon dioxide.” Chem. Commun. 48 (10): 1392–1399. https://doi.org/10.1039/C1CC15393E.
Giddings, C. G. S., K. P. Nevin, T. Woodward, D. R. Lovley, and C. S. Butler. 2015. “Simplifying microbial electrosynthesis reactor design.” Front. Microbiol. 6: 468–468.
Gooding, J. J., and V. R. Gonçales. 2017. “Recent advances in the molecular level modification of electrodes for bioelectrochemistry.” Curr. Opin. Electrochem. 5 (1): 203–210. https://doi.org/10.1016/j.coelec.2017.09.018.
Gupta, K., M. Bersani, and J. A. Darr. 2016. “Highly efficient electro-reduction of CO2 to formic acid by nano-copper.” J. Mater. Chem. A 4 (36): 13786–13794. https://doi.org/10.1039/C6TA04874A.
Havukainen, J., M. Zhan, J. Dong, M. Liikanen, I. Deviatkin, X. Li, and M. Horttanainen. 2017. “Environmental impact assessment of municipal solid waste management incorporating mechanical treatment of waste and incineration in Hangzhou, China.” J. Cleaner Prod. 141: 453–461. https://doi.org/10.1016/j.jclepro.2016.09.146.
Hutchings, G. J. 2016. “Methane activation by selective oxidation.” Top. Catal. 59 (8–9): 658–662. https://doi.org/10.1007/s11244-016-0542-x.
Jaramillo, P., W. M. Griffin, and H. S. Matthews. 2007. “Comparative life-cycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation.” Environ. Sci. Technol. 41 (17): 6290–6296. https://doi.org/10.1021/es063031o.
Jiang, Y., and R. Jianxiong Zeng. 2018. “Expanding the product spectrum of value added chemicals in microbial electrosynthesis through integrated process design—A review.” Bioresour. Technol. 269: 503–512. https://doi.org/10.1016/j.biortech.2018.08.101.
Jiang, Y., H. D. May, L. Lu, P. Liang, X. Huang, and Z. J. Ren. 2019. “Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation.” Water Res. 149: 42–55. https://doi.org/10.1016/j.watres.2018.10.092.
Jourdin, L., S. Freguia, V. Flexer, and J. Keller. 2016. “Bringing high-rate, CO2-based microbial electrosynthesis closer to practical implementation through improved electrode design and operating conditions.” Environ. Sci. Technol. 50 (4): 1982–1989. https://doi.org/10.1021/acs.est.5b04431.
Jourdin, L., T. Grieger, J. Monetti, V. Flexer, S. Freguia, Y. Lu, J. Chen, M. Romano, G. G. Wallace, and J. Keller. 2015. “High acetic acid production rate obtained by microbial electrosynthesis from carbon dioxide.” Environ. Sci. Technol. 49 (22): 13566–13574. https://doi.org/10.1021/acs.est.5b03821.
Jung, S., J. Lee, Y.-K. Park, and E. E. Kwon. 2020. “Bioelectrochemical systems for a circular bioeconomy.” Bioresour. Technol. 300: 122748. https://doi.org/10.1016/j.biortech.2020.122748.
Kaldellis, J. K., and D. Apostolou. 2017. “Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart.” Renewable Energy 108: 72–84. https://doi.org/10.1016/j.renene.2017.02.039.
Kuhl, K. P., E. R. Cave, D. N. Abram, and T. F. Jaramillo. 2012. “New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces.” Energy Environ. Sci. 5 (5): 7050–7059. https://doi.org/10.1039/c2ee21234j.
Logan, B. E., B. Hamelers, R. Rozendal, U. Schröder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, and K. Rabaey. 2006. “Microbial fuel cells: Methodology and technology.” Environ. Sci. Technol. 40 (17): 5181–5192. https://doi.org/10.1021/es0605016.
Marshall, C. W., D. E. Ross, E. B. Fichot, R. S. Norman, and H. D. May. 2013. “Long-term operation of microbial electrosynthesis systems improves acetate production by autotrophic microbiomes.” Environ. Sci. Technol. 47 (11): 6023–6029. https://doi.org/10.1021/es400341b.
Mordor Intelligence. 2019. “Formic acid market—Growth, trends, and forecast (2020–2025).” Accessed January 27, 2020. https://www.mordorintelligence.com/industry-reports/formic-acid-market.
Nevin, K. P., S. A. Hensley, A. E. Franks, Z. M. Summers, J. Ou, T. L. Woodard, O. L. Snoeyenbos-West, and D. R. Lovley. 2011. “Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms.” Appl. Environ. Microbiol. 77 (9): 2882–2886. https://doi.org/10.1128/AEM.02642-10.
Oswald, F., I. K. Stoll, M. Zwick, S. Herbig, J. Sauer, N. Boukis, and A. Neumann. 2018. “Formic acid formation by clostridium ljungdahlii at elevated pressures of carbon dioxide and hydrogen.” Front. Bioeng. Biotechnol. 6: 6. https://doi.org/10.3389/fbioe.2018.00006.
Pérez-Fortes, M., J. C. Schöneberger, A. Boulamanti, G. Harrison, and E. Tzimas. 2016. “Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential.” Int. J. Hydrogen Energy 41 (37): 16444–16462. https://doi.org/10.1016/j.ijhydene.2016.05.199.
Prévoteau, A., J. M. Carvajal-Arroyo, R. Ganigué, and K. Rabaey. 2020. “Microbial electrosynthesis from CO2: Forever a promise?” Curr. Opin. Biotechnol. 62: 48–57. https://doi.org/10.1016/j.copbio.2019.08.014.
Qiao, J., Y. Liu, F. Hong, and J. Zhang. 2014. “A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels.” Chem. Soc. Rev. 43 (2): 631–675. https://doi.org/10.1039/C3CS60323G.
Rabaey, K., L. Angenent, U. Schroder, and J. Keller. 2010. Bioelectrochemical systems: From extracellular electron transfer to biotechnological application. London: IWA Publishing.
Rabaey, K., and R. A. Rozendal. 2010. “Microbial electrosynthesis—Revisiting the electrical route for microbial production.” Nat. Rev. Microbiol. 8 (10): 706–716. https://doi.org/10.1038/nrmicro2422.
Reda, T., C. M. Plugge, N. J. Abram, and J. Hirst. 2008. “Reversible interconversion of carbon dioxide and formate by an electroactive enzyme.” Proc. Natl. Acad. Sci. 105 (31): 10654–10658. https://doi.org/10.1073/pnas.0801290105.
Reutemann, W., and H. Kieczka. 2000. “Formic acid.” In Ullmann’s encyclopedia of industrial chemistry, 1–22. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA.
Saavalainen, P., E. Turpeinen, L. Omodara, S. Kabra, K. Oravisjärvi, G. D. Yadav, R. L. Keiski, and E. Pongrácz. 2017. “Developing and testing a tool for sustainability assessment in an early process design phase—Case study of formic acid production by conventional and carbon dioxide-based routes.” J. Cleaner Prod. 168: 1636–1651. https://doi.org/10.1016/j.jclepro.2016.11.145.
Sadhukhan, J., K. S. Ng, and E. M. Hernandez. 2014. Biorefineries and chemical processes: Design, integration and sustainability analysis. London: John Wiley & Sons.
Santoro, C., C. Arbizzani, B. Erable, and I. Ieropoulos. 2017. “Microbial fuel cells: From fundamentals to applications. A review.” J. Power Sources 356: 225–244. https://doi.org/10.1016/j.jpowsour.2017.03.109.
Shemfe, M., S. Gadkari, E. Yu, S. Rasul, K. Scott, I. M. Head, S. Gu, and J. Sadhukhan. 2018. “Life cycle, techno-economic and dynamic simulation assessment of bioelectrochemical systems: A case of formic acid synthesis.” Bioresour. Technol. 255: 39–49. https://doi.org/10.1016/j.biortech.2018.01.071.
Speck, R., S. Selke, R. Auras, and J. Fitzsimmons. 2015. “Choice of life cycle assessment software can impact packaging system decisions.” Packag. Technol. Sci. 28 (7): 579–588. https://doi.org/10.1002/pts.2123.
Speck, R., S. Selke, R. Auras, and J. Fitzsimmons. 2016. “Life cycle assessment software: Selection can impact results.” J. Ind. Ecol. 20 (1): 18–28. https://doi.org/10.1111/jiec.12245.
Srikanth, S., Y. Alvarez-Gallego, K. Vanbroekhoven, and D. Pant. 2017. “Enzymatic electrosynthesis of formic acid through carbon dioxide reduction in a bioelectrochemical system: Effect of immobilization and carbonic anhydrase addition.” ChemPhysChem 18 (22): 3174–3181. https://doi.org/10.1002/cphc.201700017.
Srikanth, S., M. Maesen, X. Dominguez-Benetton, K. Vanbroekhoven, and D. Pant. 2014. “Enzymatic electrosynthesis of formate through CO2 sequestration/reduction in a bioelectrochemical system (BES).” Bioresour. Technol. 165: 350–354. https://doi.org/10.1016/j.biortech.2014.01.129.
Sutter, J. 2007. Life cycle inventories of chemicals. Bern, Switzerland: Swiss Centre for Life Cycle Inventories.
Tao, M., F. Qun, T. Hengcong, H. Zishan, J. Mingwen, G. Yunnan, M. Wangjing, and S. Zhenyu. 2017. “Heterogeneous electrochemical CO2 reduction using nonmetallic carbon-based catalysts: Current status and future challenges.” Nanotechnology 28 (47): 472001. https://doi.org/10.1088/1361-6528/aa8f6f.
Tromp, T. K., R.-L. Shia, M. Allen, J. M. Eiler, and Y. L. Yung. 2003. “Potential environmental impact of a hydrogen economy on the stratosphere.” Science 300 (5626): 1740–1742. https://doi.org/10.1126/science.1085169.
Vassilev, I., P. A. Hernandez, P. Batlle Vilanova, S. Freguia, J. O. Krömer, J. Keller, P. Ledezma, and B. Virdis. 2018. “Microbial electrosynthesis of isobutyric, butyric, caproic acids and corresponding alcohols from carbon dioxide.” ACS Sustainable Chem. Eng. 6 (7): 8485–8493. https://doi.org/10.1021/acssuschemeng.8b00739.
Vassilev, I., F. Kracke, S. Freguia, J. Keller, J. O. Krömer, P. Ledezma, and B. Virdis. 2019. “Microbial electrosynthesis system with dual biocathode arrangement for simultaneous acetogenesis, solventogenesis and carbon chain elongation.” Chem. Commun. 55 (30): 4351–4354. https://doi.org/10.1039/C9CC00208A.
Zhang, L., Z.-J. Zhao, and J. Gong. 2017. “Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms.” Angew. Chem. Int. Ed. 56 (38): 11326–11353. https://doi.org/10.1002/anie.201612214.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 25Issue 1January 2021

History

Received: Sep 15, 2019
Accepted: Mar 12, 2020
Published online: Sep 8, 2020
Published in print: Jan 1, 2021
Discussion open until: Feb 8, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Tobechi Okoroafor, Ph.D. [email protected]
Ph.D. Scholar, School of Engineering, Faculty of Science, Agriculture and Engineering, Newcastle Univ., Newcastle upon Tyne NE1 7RU, UK. Email: [email protected]
Sue Haile, Ph.D. [email protected]
Senior Lecturer, School of Engineering, Faculty of Science, Agriculture and Engineering, Newcastle Univ., Newcastle upon Tyne NE1 7RU, UK. Email: [email protected]
Sharon Velasquez-Orta, Ph.D. [email protected]
Lecturer, School of Engineering, Faculty of Science, Agriculture and Engineering, Newcastle Univ., Newcastle upon Tyne NE1 7RU, UK (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share