Technical Papers
Mar 30, 2019

Removal of Arsenic from Synthetic Groundwater Using Sulfur-Enhanced Cement-Based Filter Media

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 23, Issue 3

Abstract

Arsenic-contaminated groundwater affects millions worldwide. A cement-based filter medium (CBFM) can be used to remediate heavy metals from groundwater. Recently, the desulfurization of flue gas in coal-fired power plants has increased sulfur content in fly ash, exceeding standard limits for use in normal concrete, thereby limiting beneficial reuse. This study investigated arsenic remediation by CBFM samples produced with high-sulfur fly ashes, waste synthetic gypsum, sodium sulfide, and elemental sulfur. Hardened concrete was batch tested in arsenic-contaminated deionized (DI) water and synthetic groundwater (SG) to elucidate ion competition. Arsenic removal exceeded 90% for all CBFM specimens in DI water, apart from sodium sulfide samples. In SG, elemental-sulfur and high-sulfur fly ash CBFM mixtures had 60%–85% removal at all tested concentrations. Scanning electron microscopy and X-ray diffraction spectroscopy showed a uniform distribution of arsenic, indicating high diffusivity throughout the cementitious paste. Arsenic removal occurred in two primary mechanisms: precipitation through the formation of calcium arsenate complexes and adsorption onto calcite, ettringite, and monosulfate. This research could lead to the use of CBFM as a readily available and waste valorizing remediation tool for arsenic-impacted areas.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

Funding was provided through the National Science Foundation (Grant No. 477 CBET-1439378) and was also supported by the University of Missouri Intellectual Property Fast Track 478 Initiative and UMKC Summer Research Opportunity for Undergraduates. Additional thanks go to Pace Analytics for ICP-MS testing.

References

Agency for Toxic Substances and Disease Registry. 2007. Toxicological profile for arsenic. Washington, DC: US Public Health Service, US Dept. of Health and Human Services.
Ahmaruzzaman, M. 2010. “A review on the utilization of fly ash.” Prog. Energy Combust. Sci. 36 (3): 327–363. https://doi.org/10.1016/j.pecs.2009.11.003.
Ahuja, S. 2014. Water reclamation and sustainability. Calabash, NC: Elsevier Science.
American Coal Ash Association. 2015. 2015 coal combustion product (CCP) production & use survey report. Ash at work. Farmington Hills, MI: American Coal Ash Association.
ASTM. 2003. Standard specifications for concrete aggregates. ASTM C33. West Conshohocken, PA: ASTM.
ASTM. 2010a. Standard guide for examination of hardened concrete using scanning electron microscopy. ASTM C1723. West Conshohocken, PA: ASTM.
ASTM. 2010b. Standard specification for coal fly ash and raw or calcined natural pozzolan for use. ASTM C618. West Conshohocken, PA: ASTM.
ASTM. 2011. Standard specification for reagent water. ASTM D1193. West Conshohocken, PA: ASTM.
ASTM. 2016a. ASTM C150 standard specification for portland cement. ASTM C150. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard practice for making and curing concrete test specimens in the laboratory. ASTM C192/C192M-16a. West Conshohocken, PA: ASTM.
Baig, S. A., T. Sheng, Y. Hu, J. Xu, and X. Xu. 2015. “Arsenic removal from natural water using low cost granulated adsorbents: A review.” CLEAN-Soil Air Water 43 (1): 13–26. https://doi.org/10.1002/clen.201200466.
Banerjee, G., and R. Chakraborty. 2005. “Management of arsenic-laden water plant sludge by stabilization.” Clean Technol. Environ. Policy 7 (4): 270–278. https://doi.org/10.1007/s10098-005-0275-1.
Bardelli, F., M. Benvenuti, P. Costagliola, F. Di Benedetto, P. Lattanzi, C. Meneghini, M. Romanelli, and L. Valenzano. 2011. “Arsenic uptake by natural calcite: An XAS study.” Geochim. Cosmochim. Acta 75 (11): 3011–3023. https://doi.org/10.1016/j.gca.2011.03.003.
Barnett, F., S. Lynn, D. Reisman, and USEPA. 2009. Technology performance review: Selecting and using solidification/stabilization treatment for site remediation. Cincinnati: USEPA.
Baur, I., P. Keller, D. Mavrocordatos, B. Wehrli, and C. A. Johnson. 2004. “Dissolution-precipitation behavior of ettringite, monosulfate, and calcium silicate hydrate.” Cem. Concr. Res. 34 (2): 341–348. https://doi.org/10.1016/j.cemconres.2003.08.016.
Berg, M., S. Luzi, P. T. K. Trang, P. H. Viet, W. Giger, and D. Stüben. 2006. “Arsenic removal from groundwater by household sand filters: Comparative field study, model calculations, and health benefits.” Environ. Sci. Technol. 40 (17): 5567–5573. https://doi.org/10.1021/es060144z.
Bothe, J. V., and P. W. Brown. 1999. “Arsenic immobilization by calcium arsenate formation.” Environ. Sci. Technol. 33 (21): 3806–3811. https://doi.org/10.1021/es980998m.
Buchler, P., R. A. Hanna, H. Akhter, F. K. Cartledge, and M. E. Tittlebaum. 1996. “Solidification/stabilization of arsenic: Effects of arsenic speciation.” J. Environ. Sci. Health Part A: Environ. Sci. Eng. Toxic Hazard. Subst. Control 31 (4): 747–754. https://doi.org/10.1080/10934529609376385.
Chiban, M., M. Zerbet, G. Carja, and F. Sinan. 2012. “Application of low-cost adsorbents for arsenic removal: A review.” J. Environ. Chem. Ecotoxicol. 4 (5): 91–102. https://doi.org/10.5897/JECE11.013.
Chuan, M. C., G. Y. Shu, and J. C. Liu. 1996. “Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH.” Water Air Soil Pollut. 90 (3–4): 543–556. https://doi.org/10.1007/BF00282668.
Clark, B. A., and P. W. Brown. 1999. “Formation of ettringite from monosubstituted calcium sulfoaluminate hydrate and gypsum.” J. Am. Ceram. Soc. 82 (10): 2900–2905. https://doi.org/10.1111/j.1151-2916.1999.tb02174.x.
Cui, J., C. Jing, D. Che, J. Zhang, and S. Duan. 2015. “Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study.” J. Environ. Sci. 32 (III): 42–53. https://doi.org/10.1016/j.jes.2014.10.020.
Cullen, W. R., and K. J. Reimer. 1989. “Arsenic speciation in the environment.” Chem. Rev. 89 (4): 713–764. https://doi.org/10.1021/cr00094a002.
Czurda, K. A., and R. Haus. 2002. “Reactive barriers with fly ash zeolites for in situ groundwater remediation.” Appl. Clay Sci. 21 (1–2): 13–20. https://doi.org/10.1016/S0169-1317(01)00088-6.
Davenport, J. R., and F. J. Peryea. 1991. “Phosphate fertilizers influence leaching of lead and arsenic in a soil contaminated with lead arsenate.” Water Air Soil Pollut. 57 (1): 101–110. https://doi.org/10.1007/BF00282873.
Dong, H., X. Guan, and I. M. C. C. Lo. 2012. “Fate of As(V)-treated nano zero-valent iron: Determination of arsenic desorption potential under varying environmental conditions by phosphate extraction.” Water Res. 46 (13): 4071–4080. https://doi.org/10.1016/j.watres.2012.05.015.
Drahota, P., and M. Filippi. 2009. “Secondary arsenic minerals in the environment: A review.” Environ. Int. 35 (8): 1243–1255. https://doi.org/10.1016/j.envint.2009.07.004.
Fernández-Martínez, A., G. Román-Ross, G. J. Cuello, X. Turrillas, L. Charlet, M. R. Johnson, and F. Bardelli. 2006. “Arsenic uptake by gypsum and calcite: Modelling and probing by neutron and X-ray scattering.” Phys. B: Condens. Matter 385–386 (Part 2): 935–937. https://doi.org/10.1016/j.physb.2006.05.276.
Gao, X., R. A. Root, J. Farrell, W. Ela, and J. Chorover. 2013. “Effect of silicic acid on arsenate and arsenite retention mechanisms on 6-L ferrihydrite: A spectroscopic and batch adsorption approach.” Appl. Geochem. 38: 110–120. https://doi.org/10.1016/j.apgeochem.2013.09.005.
Guan, X., H. Dong, J. Ma, and L. Jiang. 2009a. “Removal of arsenic from water: Effects of competing anions on As(III) removal in KMnO4-Fe(II) process.” Water Res. 43 (15): 3891–3899. https://doi.org/10.1016/j.watres.2009.06.008.
Guan, X., J. Ma, H. Dong, and L. Jiang. 2009b. “Removal of arsenic from water: Effect of calcium ions on As(III) removal in the KMnO4-Fe(II) process.” Water Res. 43 (20): 5119–5128. https://doi.org/10.1016/j.watres.2008.12.054.
Higgins, M. R., and T. M. Olson. 2009. “Life-cycle case study comparison of permeable reactive barrier versus pump-and-treat remediation.” Environ. Sci. Technol. 43 (24): 9432–9438. https://doi.org/10.1021/es9015537.
Hjaila, K., R. Baccar, M. Sarrà, C. M. Gasol, and P. Blánquez. 2013. “Environmental impact associated with activated carbon preparation from olive-waste cake via life cycle assessment.” J. Environ. Manage. 130: 242–247. https://doi.org/10.1016/j.jenvman.2013.08.061.
Holmes, R. R., M. L. Hart, and J. T. Kevern. 2017a. “Enhancing the ability of pervious concrete to remove heavy metals from stormwater.” J. Sustainable Water Built Environ. 3 (2): 04017004. https://doi.org/10.1061/JSWBAY.0000823.
Holmes, R. R., M. L. Hart, and J. T. Kevern. 2017b. “Heavy metal removal capacity of individual components of permeable reactive concrete.” J. Contam. Hydrol. 196: 52–61. https://doi.org/10.1016/j.jconhyd.2016.12.005.
Holmes, R. R., M. L. Hart, and J. T. Kevern. 2017c. “Removal and breakthrough of lead, cadmium, and zinc in permeable reactive concrete.” Environ. Eng. Sci. 35 (5): 408–419. https://doi.org/10.1089/ees.2017.0160.
Huy, T., T. Tuyet-Hanh, R. Johnston, and H. Nguyen-Viet. 2014. “Assessing health risk due to exposure to arsenic in drinking water in Hanam Province, Vietnam.” Int. J. Environ. Res. Publ. Health 11 (8): 7575–7591. https://doi.org/10.3390/ijerph110807575.
Indelicato, B. M. 1998. Comparison of zero-valent iron and activated carbon for treating chlorinated contaminants in groundwater. Cambridge, MA: Massachusetts Institute of Technology.
Johnston, K. 2018. The production, characterization, and upgrading of biochars into activated carbon. Orono, ME: Univ. of Maine.
Jomova, K., Z. Jenisova, M. Feszterova, S. Baros, J. Liska, D. Hudecova, C. J. Rhodes, and M. Valko. 2011. “Arsenic: Toxicity, oxidative stress and human disease.” J. Appl. Toxicol. 31 (2): 95–107. https://doi.org/10.1002/jat.1649.
Karim, M. R., S. Manshoven, M. R. Islam, J. A. Gascon, M. Ibarra, L. Diels, and M. M. Rahman. 2013. “Assessment of an urban contaminated site from tannery industries in Dhaka City, Bangladesh.” J. Hazard. Toxic Radioact. Waste 17 (1): 52–61. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000139.
Kim, E. J., J. E. Herrera, D. Huggins, J. Braam, and S. Koshowski. 2011. “Effect of pH on the concentrations of lead and trace contaminants in drinking water: A combined batch, pipe loop and sentinel home study.” Water Res. 45 (9): 2763–2774. https://doi.org/10.1016/j.watres.2011.02.023.
Kohl, A. L., and R. B. Nielsen. 1997. “Alkanolamines for hydrogen sulfide and carbon dioxide removal.” In Gas purification, 40–186. Houston: Elsevier.
Komastka S. H., B. Kerkhoff, and W. C. Panarese, eds. 2003. Design and control of concrete mixtures. Stokie, IL: Portland Cement Association.
Komnitsas, K., G. Bartzas, and I. Paspaliaris. 2006. “Modeling of reaction front progress in fly ash permeable reactive barriers.” Environ. Forensics 7 (3): 219–231. https://doi.org/10.1080/15275920600840552.
Kuang, X., and J. Sansalone. 2011. “Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation.” Water Sci. Technol. 63 (12): 2992–2998. https://doi.org/10.2166/wst.2011.505.
Kundu, S., S. S. Kavalakatt, A. Pal, S. K. Ghosh, M. Mandal, and T. Pal. 2004. “Removal of arsenic using hardened paste of Portland cement: Batch adsorption and column study.” Water Res. 38 (17): 3780–3790. https://doi.org/10.1016/j.watres.2004.06.018.
Lin, J., N. Chen, M. J. Nilges, and Y. Pan. 2013. “Arsenic speciation in synthetic gypsum (CaSO4·2H2O): A synchrotron XAS, single-crystal EPR, and pulsed ENDOR study.” Geochim. Cosmochim. Acta 106 (12): 524–540. https://doi.org/10.1016/j.gca.2012.12.019.
Manju, G. N., C. Raji, and T. S. Anirudhan. 1998. “Evaluation of coconut husk carbon for the removal of arsenic from water.” Water Res. 32 (10): 3062–3070. https://doi.org/10.1016/S0043-1354(98)00068-2.
Matschei, T., B. Lothenbach, and F. P. Glasser. 2007. “The AFm phase in Portland cement.” Cem. Concr. Res. 37 (2): 118–130. https://doi.org/10.1016/j.cemconres.2006.10.010.
McLellan, B. C., R. P. Williams, J. Lay, A. Van Riessen, and G. D. Corder. 2011. “Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement.” J. Cleaner Prod. 19 (9–10): 1080–1090. https://doi.org/10.1016/j.jclepro.2011.02.010.
McNeill, L. S., and M. Edwards. 1997. “Arsenic removal during precipitative softening.” J. Environ. Eng. 123 (5): 453–460. https://doi.org/10.1061/(ASCE)0733-9372(1997)123:5(453).
Mesbah, A., M. François, C. Cau-dit-Coumes, F. Frizon, Y. Filinchuk, F. Leroux, J. Ravaux, and G. Renaudin. 2011. “Crystal structure of Kuzel’s salt 3CaO·Al2O3·1/2CaSO4·1/2CaCl2·11H2O determined by synchrotron powder diffraction.” Cem. Concr. Res. 41 (5): 504–509. https://doi.org/10.1016/j.cemconres.2011.01.015.
Mishra, D., and J. Farrell. 2005. “Evaluation of mixed valent iron oxides as reactive adsorbents for arsenic removal.” Environ. Sci. Technol. 39 (24): 9689–9694. https://doi.org/10.1021/es050949r.
Mohan, D., and C. U. Pittman. 2007. “Arsenic removal from water/wastewater using adsorbents—A critical review.” J. Hazard. Mater. 142 (1–2): 1–53. https://doi.org/10.1016/j.jhazmat.2007.01.006.
Mondal, P., S. Bhowmick, D. Chatterjee, A. Figoli, and B. Van der Bruggen. 2013. “Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions.” Chemosphere 92 (2): 157–170. https://doi.org/10.1016/j.chemosphere.2013.01.097.
Morgenroth, J., G. Buchan, and B. C. Scharenbroch. 2013. “Belowground effects of porous pavements—Soil moisture and chemical properties.” Ecol. Eng. 51 (Feb): 221–228. https://doi.org/10.1016/j.ecoleng.2012.12.041.
Mulligan, C. N., R. N. Yong, and B. F. Gibbs. 2001. “Remediation technologies for metal-contaminated soils and groundwater: An evaluation.” Eng. Geol. 60 (1–4): 193–207. https://doi.org/10.1016/S0013-7952(00)00101-0.
Myneni, S. C. B., S. J. Traina, T. J. Logan, and G. A. Waychunas. 1997. “Oxyanion behavior in alkaline environments: Sorption and desorption of arsenate in Ettringite.” Environ. Sci. Technol. 31 (6): 1761–1768. https://doi.org/10.1021/es9607594.
NAVFAC (Naval Facilities Engineering Command). 2012. Permeable reactive barrier cost and performance report. Port Hueneme, CA: NAVFAC.
Nishimura, T., and R. G. Robins. 2008. “A re-evaluation of the solubility and stability regions of calcium arsenites and calcium arsenates in aqueous solution at 25°C.” Mineral Process. Extr. Metall. Rev. 18 (3): 283–308. https://doi.org/10.1080/08827509808914159.
Nowasell, Q. C., J. T. Kevern, Q. Cao, and J. T. Kevern. 2015. “Using drinking water treatment waste as a low-cost internal curing agent for concrete.” ACI Mater. J. 112 (1): 229–235. https://doi.org/10.14359/51686980.
Pal, P., S. Z. Ahammad, A. Pattanayak, and P. Bhattacharya. 2007. “Removal of arsenic from drinking water by chemical precipitation—A modeling and simulation study of the physical-chemical processes.” Water Environ. Res. 79 (4): 357–366. https://doi.org/10.2175/106143006X111754.
Park, J. H., Y.-S. Han, and J. S. Ahn. 2016. “Comparison of arsenic co-precipitation and adsorption by iron minerals and the mechanism of arsenic natural attenuation in a mine stream.” Water Res. 106: 295–303. https://doi.org/10.1016/j.watres.2016.10.006.
Perkins, R. B., and C. D. Palmer. 1999. “Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5–75°C.” Geochim. Cosmochim. Acta 63 (13–14): 1969–1980. https://doi.org/10.1016/S0016-7037(99)00078-2(99)00078-2.
Powell, R. M., P. D. Powell, R. W. Puls, and D. S. Burden. 2002. Economic analysis of the implementation of permeable reactive barriers for remediation of contaminated ground water. Collingdale, PA: Diane Publishing.
Powell, R. M., R. W. Puls, D. W. Blowes, J. L. Vogan, R. W. Gillham, D. Schultz, P. D. Powell, T. Sivavec, and R. Landis. 1998. Permeable reactive barrier technologies for contaminant remediation. EPA/600/R-98/125. Cincinnati: National Service Center for Environmental Publications.
Renard, F., C. V. Putnis, G. Montes-Hernandez, E. Ruiz-Agudo, J. Hovelmann, and G. Sarret. 2015. “Interactions of arsenic with calcite surfaces revealed by in situ nanoscale imaging.” Geochim. Cosmochim. Acta 159: 61–79. https://doi.org/10.1016/j.gca.2015.03.025.
Renaudin, G., R. Segni, D. Mentel, J.-M. Nedelec, F. Leroux, and C. Taviot-Gueho. 2007. “A raman study of the sulfated cement hydrates: Ettringite and monosulfoaluminate.” J. Adv. Concr. Technol. 5 (3): 299–312. https://doi.org/10.3151/jact.5.299.
Sasaki, T., A. Iizuka, M. Watanabe, T. Hongo, and A. Yamasaki. 2014. “Preparation and performance of arsenate (V) adsorbents derived from concrete wastes.” Waste Manage. 34 (10): 1829–1835. https://doi.org/10.1016/j.wasman.2014.01.001.
Sø, H. U., D. Postma, R. Jakobsen, and F. Larsen. 2008. “Sorption and desorption of arsenate and arsenite on calcite.” Geochim. Cosmochim. Acta 72 (24): 5871–5884. https://doi.org/10.1016/j.gca.2008.09.023.
Stark, J., and K. Bollmann. 2000. “Delayed ettringite formation in concrete.” Nordic Concr. Res. Publ. 23: 4–28.
Taylor, H. F. W. 1997. Cement chemistry. London: Thomas Telford Publishing.
Thakur, A. K., C. S. P. Ojha, V. P. Singh, and B. B. Chaudhur. 2017. “Potential for river bank filtration in arsenic-affected region in India: Case study.” J. Hazard. Toxic Radioactive Waste 21 (4): 04017015. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000363.
Tolonen, E.-T., T. Hu, J. Rämö, and U. Lassi. 2016. “The removal of sulphate from mine water by precipitation as ettringite and the utilisation of the precipitate as a sorbent for arsenate removal.” J. Environ. Manage. 181: 856–862. https://doi.org/10.1016/j.jenvman.2016.06.053.
Tóth, J. 2005. Adsorption—Theory, modelling, and analysis. Edited by Intergovernmental Panel on Climate Change. New York: Cambridge University Press.
Tyrovola, K., and N. P. Nikolaidis. 2009. “Arsenic mobility and stabilization in topsoils.” Water Res. 43 (6): 1589–1596. https://doi.org/10.1016/j.watres.2009.01.001.
USEPA. 1996. Method 3050B-Acid digestion of sediments, sludges, and soils. Washington, DC: USEPA.
USEPA. 2000. EPA method 6010. Washington, DC: USEPA.
USEPA. 2015. Record of decision: Operable unit 7—Plainwell Mill Allied Paper, Inc./Portage Creek/Kalamazoo River Superfund site (MID006007306). Chicago: USEPA.
Velazco, G., J. M. Almanza, D. A. Cortés, J. C. Escobedo, and J. I. Escalante-Garcia. 2014. “Effect of citric acid and the hemihydrate amount on the properties of a calcium sulphoaluminate cement.” Materiales de Construcción 64 (316): 1–8. https://doi.org/10.3989/mc.2014.03513.
Voglar, G. E., and D. Leštan. 2011. “Efficiency modeling of solidification/stabilization of multi-metal contaminated industrial soil using cement and additives.” J. Hazard. Mater. 192 (2): 753–762. https://doi.org/10.1016/j.jhazmat.2011.05.089.
Wang, Y., and D. C. W. Tsang. 2013. “Effects of solution chemistry on arsenic(V) removal by low-cost adsorbents.” J. Environ. Sci. (China) 25 (11): 2291–2298. https://doi.org/10.1016/S1001-0742(12)60296-4.
Weiss, W. J., and W. W. Jason. 2015. “Concrete pavement joint durability: A sorption-based model for saturation, the role of distributed cracking, and calcium oxychloride formation.” In Proc., CONCREEP 10, edited by C. Hellmich, B. Pichler, and J. Kollegger, 211–218. Reston, VA: ASCE.
Wilkin, R. T., D. Wallschläger, and R. G. Ford. 2003. “Speciation of arsenic in sulfidic waters.” Geochem. Trans. 4 (1): 1. https://doi.org/10.1186/1467-4866-4-1.
Wolthers, M., L. Charlet, C. H. Der Weijden, P. R. van der Linde, and D. Rickard. 2005. “Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite.” Geochim. Cosmochim. Acta 69 (14): 3483–3492. https://doi.org/10.1016/j.gca.2005.03.003.
Xu, Y., Y. Dai, J. Zhou, Z. P. Xu, G. Qian, and G. Q. M. Lu. 2010. “Removal efficiency of arsenate and phosphate from aqueous solution using layered double hydroxide materials: Intercalation vs. precipitation.” J. Mater. Chem. 20 (22): 4684. https://doi.org/10.1039/b926239c.
Xu, Y., H. Lv, G. Qian, J. Zhang, and J. Z. Zhou. 2014. “Dual removal process of phosphate on Ca-layered double hydroxide with substitution of Fe for Al.” J. Hazard. Toxic Radioactive Waste 18 (4): A4014001. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000193.
Zhang, D., Y. Jia, J. Ma, and Z. Li. 2011. “Removal of arsenic from water by Friedel’s salt (FS: 3CaO·Al2O3·CaCl2·10H2O).” J. Hazard. Mater. 195 (Nov): 398–404. https://doi.org/10.1016/j.jhazmat.2011.08.058.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 23Issue 3July 2019

History

Received: Apr 23, 2018
Accepted: Dec 4, 2018
Published online: Mar 30, 2019
Published in print: Jul 1, 2019
Discussion open until: Aug 30, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Ryan R. Holmes, S.M.ASCE [email protected]
Doctoral Candidate, Dept. of Civil and Mechanical Engineering, Univ. of Missouri–Kansas City, 5110 Rockhill Rd., Kansas City, MO 64110. Email: [email protected]
Assistant Professor, Dept. of Civil and Mechanical Engineering, Univ. of Missouri–Kansas City, 5110 Rockhill Rd., Kansas City, MO 64110 (corresponding author). ORCID: https://orcid.org/0000-0002-2458-8799. Email: [email protected]
John T. Kevern, Ph.D., M.ASCE [email protected]
P.E.
Associate Professor and Chair, Dept. of Civil and Mechanical Engineering, Univ. of Missouri–Kansas City, 5110 Rockhill Rd., Kansas City, MO 64110. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share