Technical Papers
May 6, 2015

Different Analytical Approaches for the Determination of Presence of Engineered Nanomaterials in Natural Environments

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 20, Issue 1

Abstract

Industrial revolution has led to the introduction of innumerable contaminants into the environment via industrial, agricultural, and household applications. In particular, engineered nanoparticles (ENPs), which are emerging in the natural environment and being transported in the environment, may have a significant effect on ecosystems, even though they may only be present at low concentrations. Nanotechnology is going to play a major role which will be responsible for the release of ENPs in the environmental matrices and thus has led to increased focus on environmental research for the betterment of human society. Despite widespread applications of ENPs, in recent years, their hazardous effects on the air, water, soil, and sediments have been studied, which directly impact human health. Hence, to evaluate their persistence and understand the mechanisms that affect their fate, it is necessary to obtain realistic impact due to significant concentration of ENPs. The application of analytical techniques, such as ultraviolet (UV) spectroscopy, nuclear magnetic resonance (NMR), and inductively couple plasma spectroscopy-mass spectroscopy (ICP-MS), for the detection of ENPs in the natural environment is thus the heart of environmental research. The present review highlights the conjunction of sampling and separation tools with analytical techniques for detection and analysis of ENPs in the natural environment.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors thank the Council of Scientific and Industrial Research-University of Grant Commission (CSIR-UGC) for providing financial assistance to the first author. Dr. Sangeeta Lal would like to thank colleagues at Magadh University, Bihar, for their assistance during preparation of the review. The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Discovery Grant 355254 and Strategic Grant) and Institut National de la Recherche Scientifique-Centre Eau Terre Environnement (INRS-ETE) for financial support. The views or opinions expressed in this article are those of the authors.

References

Al-Somali, A. M., Krueger, K. M., Falkner, J. C., and Colvin, V. L. (2004). “Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold.” Anal. Chem., 76(19), 5903–5910.
Arnaud, I., Abid, J.-P., Roussel, C., and Girault, H. H. (2005). “Size-selective separation of gold nanoparticles using isoelectric focusing electrophoresis (IEF).” Chem. Commun., (6), 787.
Atwood, J. L., Koutsantonis, G. A., and Raston, C. L. (1994). “Purification of C60 and C70 by selective complexation with calixarenes.” Nature, 368(6468), 229–231.
Bai, L., Ma, X., Liu, J., Sun, X., Zhao, D., and Evans, D. G. (2010). “Rapid separation and purification of nanoparticles in organic density gradients.” J. Am. Chem. Soc., 132(7), 2333–2337.
Beckett, R. (1987). “The application of filed flow fractionation technique to the characterization of complex environmental samples.” Environ. Technol. Lett., 8(1–12), 339–354.
Berset, J. D., Ejem, M., Holzer, R., and Lischer, P. (1999). “Comparison of different drying, extraction and detection techniques for the determination of priority polycyclic aromatic hydrocarbons in background contaminated soil samples.” Anal. Chim. Acta, 383(3), 263–275.
Bildleman, T. F. (1988). “Atmospheric processes.” Environ. Sci. Technol., 22(4), 361–367.
Boersma, M. G., et al. (1998). “F19 nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechol.” Appl. Environ. Microbiol., 64(4), 1256–1263.
Boersma, M. G., Solyanikova, I. P., Van Berkel, W. J. H., Vervoort, J., Golovieva, L. A., and Rietjens, I. M. C. M. (2001). “19F NMR metabolomics for the elucidation of microbial degradation pathways of fluorophenols.” J. Ind. Microbiol. Biotechnol., 26(1–2), 22–34.
Bondar, V. S., et al. (1998). “19F NMR study on the biodegradation of fluorophenols by various Rhodococcus species.” Biodegradation, 9(6), 475–486.
Brack, W., et al. (2008). “How to confirm identified toxicants in effect-directed analysis.” Anal. Bioanal. Chem., 390(8), 1959–1973.
Brack, W., Klamer, H. J., Lopez de Alda, M., and Barcelo, D. (2007). “Effect-directed analysis of key toxicants in European river basins. A review.” Environ. Sci. Pollut. Res. Int., 14(1), 30–38.
Buchberger, W. W. (2011). “Current approaches to trace analysis of pharmaceuticals and personal care products in the environment.” J. Chromatogr. A, 1218(4), 603–618.
Calafat, A. M., Kuklenyik, Z., Reidy, J. A., Caudill, S. P., Tully, J. S., and Needham, L. L. (2007). “Serum concentrations of 11 polyfluoroalkyl compounds in the U.S. population: Data from the national health and nutrition examination survey (NHANES) 1999-2000.” Environ. Sci. Technol., 41(7), 2237–2242.
Carboni, A., Emke, E., Parsons, J. R., Kalbitz, K., and Voogt, D. A. (2014). “An analytical method for determination of fullerenes and functionalized fullerenes in soils with high performance liquid chromatography and UV detection.” Anal. Chim. Acta, 807(7), 159–165.
Cardoza, L. A., Almeida, V. K., Carr, A., and Larive, C. K. (2003). “Separations coupled with NMR detection.” Trends Anal. Chem., 22(10), 766–775.
Carlsson, H., Nilsson, U., Becker, G., and Östman, C. (1997). “Organophosphates esters flame retardants and plasticizers in the indoor environment: Analytical methodologies and occurrence.” Environ. Sci. Technol., 31(10), 2931–2936.
Chattopadhyay, D., Lastella, S., Kim, S., and Papadimitrakopoulos, F. (2002). “Length separation of Zwitterion-functionalized single wall carbon nanotubes by GPC.” J. Am. Chem. Soc., 124(5), 728–729.
Demeestere, K., Dewulf, J., De Witte, B., and Van Langenhove, H. (2007). “Sample preparation for the analysis of volatile organic compounds in air and water matrices.” J. Chromatogr. A, 1153(1–2), 130–144.
Demeestere, K., Petrovic, M., Gros, M., Dewulf, J., Van Langenhove, H., and Barcelo, D. (2010). “Molecularly imprinted polymers (MIPs) as an innovative solid-phase extraction sorbent for the analysis of antidepressants in environmental waters.” Anal. Bioanal. Chem., 396(2), 825–837.
EPA. (2014). “Detection and characterization of engineered nanomaterials in the environment: Current state-of-the-art and future directions.” 〈http://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=520064〉 (Aug. 2014).
Esteve-Turrillas, F., Yusa, V., Pastor, A., and de la Guardia, M. (2008). “New perspectives in the use of semipermeable membrane devices as passive samplers.” Talanta, 74(4), 443–457.
Farre, M., Sanchıs, J., and Barcelo, D. (2011). “Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment.” Trends Anal. Chem., 30(3), 517–527.
Fedorov, L. A., and Donstovalova, V. I. (1995). “NMR approach to structure analysis of aromatic toxicants in environment.” Chemosphere, 30(7), 1311–1329.
Finkelstein, Z. L. I., et al. (2000). “Identification of fluoropyrogallols as new intermediates in biotransformation of monofluorophenols on Rhodococcus opacus.” Appl. Environ. Microbiol., 66(5), 2148–2153.
Fushimi, A., Tanabe, K., Hasegawa, S., and Kobayashi, S. (2007). “Investigation of characterization method for nanoparticles in roadside atmosphere by thermal desorption-gas chromatography/mass spectrometry using a pyrolyzer.” Sci. Total Environ., 386(1–3), 83–92.
Giesy, J. P., et al. (2006). “Persistent organic pollutants in the Great Lakes.” Handbook in environmental chemistry, R. A. Hites, ed., Vol. 5, Springer, Berlin, 430.
Gigault, J., and Hackley, V. A. (2013). “Differentiation and characterization of isotopically modified silver nanoparticles in aqueous media using asymmetric-flow field flow fractionation coupled to optical detection and mass spectrometry.” Anal. Chim. Acta, 763(6), 57–66.
Gottschalk, F., and Nowack, B. (2011). “The release of engineered nanomaterials to the environment.” J. Environ. Monit., 13(5), 1145.
Greswell, R. B., Rahman, S. H., Cuthbert, M. O., and Tellam, J. H. (2010). “An inexpensive flow-through laser neph-elometer for the detection of natural colloids and manufactured nanoparticles.” J. Hydrol., 388(1–2), 112–120.
Hanauer, M., Pierrat, S., Zins, I., Lotz, A., and Sönnichsen, C. (2007). “Separation of nanoparticles by gel electrophoresis according to size and shape.” Nano Lett., 7(9), 2881–2885.
Hansen, K. J., Johnson, H. O., Eldridge, J. S., Butenhoff, J. L., and Dick, L. A. (2002). “Quantitative characterization of trace levels of PFOS and PFOA in the Tennessee River.” Environ. Sci. Technol., 36(8), 1681–1685.
Hogenboom, A. C., van Leerdam, J. A., and de Voogt, P. (2009). “Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry.” J. Chromatogr. A, 1216(3), 510–519.
Hong, F., Pehkonen, S. O., and Brooks, E. (2000). “Pathways for the hydrolysis of phorate: Product studies by (31)P NMR and GC-MS.” J. Agric. Food Chem., 48(7), 3013–3017.
Houde, M., Martin, J. W., Letcher, R. J., Solomon, K. R., and Muir, D. C. G. (2006). “Biological monitoring of polyfluoroalkyl substances: A review.” Environ. Sci. Technol., 40(11), 3463–3473.
Isaacson, C. W., Kleber, M., and Field, J. (2009). “Quantitative analysis of fullerene nanomaterials in environmental systems: A critical review.” Environ. Sci. Technol., 43(17), 6463–6474.
Jacobs, M. W., Coates, J. A., Delfino, J. J., Bitton, G., Davis, W. M., and Garcia, K. L. (1993). “Comparison of sediment extract Microtox toxicity with semi-volatile organic priority pollutant concentrations.” Arch. Environ. Contam. Toxicol., 24(4), 461–468.
Jassby, D., Chae, S.-R., Hendren, Z., and Wiesner, M. (2010). “Membrane filtration of fullerene nanoparticle suspensions: Effects of derivatization, pressure, electrolyte species and concentration.” J. Colloid Interface Sci., 346(2), 296–302.
Kannan, K., et al. (2004). “Perflurooctanesulfonate and realted fluorochemicals in human blood from several countries.” Environ. Sci. Technol., 38(17), 4489–4495.
Khosravi, K., Hoque, M. E., Dimock, B., Hintelmann, H., and Metcalfe, C. D. (2012). “A novel approach for determining total titanium from titanium dioxide nanoparticles suspended in water and biosolids by digestion with ammonium persulfate.” Anal. Chim. Acta, 713(3), 86–91.
Knoppe, S., Boudon, J., Dolamic, I., Dass, A., and Burgi, T. (2011). “Size exclusion chromatography for semipreparative scale separation of Au38(SR)24 and Au40(SR)24 and larger clusters.” Anal. Chem., 83(13), 5056–5061.
Köhler, A., Som, C., Helland, A., and Gottschalk, F. (2008). “Studying the potential release of carbon nanotubes throughout the application lifecycle.” J. Cleaner Prod., 16(8–9), 927–937.
Koros, W. J., Ma, Y. H., and Shimidzu, T. (1996). “Terminology for membranes and membrane processes (IUPAC recommendation 1996).” J. Membr. Sci., 120(2), i–159.
Krueger, K. M., Al-Somali, A. M., Falkner, J. C., and Colvin, V. L. (2005). “Characterization of nanocrystalline CdSe by size exclusion chromatography.” Anal. Chem., 77(11), 3511–3515.
Kubwabo, C., Vais, N., and Benoit, F. M. (2004). “A pilot study on the determination of perfluorooctanesulfonate and other perfluorinated compounds in blood of Canadians.” J. Environ. Monit., 6(6), 540–545.
Lespes, G., and Gigault, J. (2011). “Hyphenated analytical techniques for multidimensional characterisation of submicron particles: A review.” Anal. Chim. Acta, 692(1–2), 26–41.
Liu, F.-K. (2009). “Analysis and applications of nanoparticles in the separation sciences: A case of gold nanoparticles.” J. Chromatogr. A, 1216(52), 9034–9047.
Liu, J., Legros, S., Ma, G., Veinot, J. G. C., von der Kamme, F., and Hofmann, T. (2012). “Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles.” Chemosphere, 87(8), 918–924.
Lohmann, R., Corrigan, B. P., Howsam, M., Jones, K. C., and Ockenden, W. A. (2001). “Further developments in the use of semi-permeable membrane devices (SPMDs) as passive air samplers for persistent organic pollutants: Field application in a spatial survey of PCDD/Fs and PAHs.” Environ. Sci. Technol., 35(12), 2576–2582.
Lohmann, R., and Jones, K. C. (1998). “ Dioxins and furans in air and deposition: a review of levels, behaviour and processes.” Sci. Total Environ., 219(1), 53–81.
López-Lorente, A. I., Simonet, B. M., and Valcárcel, M. (2011). “Electrophoretic methods for the analysis of nanoparticles.” TrAC Trends Anal. Chem., 30(1), 58–71.
Luo, P., et al. (2013). “Visualization and characterization of engineered nanoparticles in complex environmental and food matrices using atmospheric scanning electron microscopy.” J. Microsc., 250(1), 32–41.
Luykx, D. M., Peters, R. J., Van Ruth, S. M., and Bousmeester, H. (2008). “A review of analytical methods for the identification and characterization of nano delivery systems in food.” J. Agric. Food Chem., 56(18), 8231–8247.
Marazuela, M. D., and Bogialli, S. (2009). “A review of novel strategies of sample preparation for the determination of antibacterial residues in foodstuffs using liquid chromatography-based analytical methods.” Anal. Chim. Acta, 645(1–2), 5–17.
Martin, J. W., et al. (2002). “Colletion of airborne fluorinated organics and analysis by gas chromatography/chemical ionization mass spectrometry.” Anal. Chem., 74(3), 584–590.
Martin, J. W., Whittle, D. M., Muir, D. C. G., and Mabury, S. A. (2004). “Identification of long-chain perfluorinated acids in biota from Canadian artic.” Environ. Sci. Technol., 38(20), 5379–5385.
Maurer-Jones, M. A., Gunsolus, I. L., Murphy, C. J., and Haynes, C. L. (2013). “Toxicity of engineered nanoparticles in the environment.” Anal. Chem., 85(6), 3036–3049.
Mihranyan, A., Ferraz, N., and Strømme, M. (2012). “Current status and future prospects of nanotechnology in cosmetics.” Progr. Mater. Sci., 57(5), 875–910.
Mitrano, D. M., Lesher, E. K., Bednar, A., Monserud, J., Higgins, C. P., and Ranville, J. F. (2012). “Detecting nanoparticulate silver using single-particle inductively coupled plasma-mass spectrometry.” Environ. Toxicol. Chem., 31(1), 115–121.
Muir, D. C. G., and Howard, P. H. (2006). “Are there new persistent organic pollutants? A challenge for environmental chemists.” Environ. Sci. Technol., 40(23), 7157–7166.
Mukal, D., Sexena, N., and Dwivedi, P. D. (2009). “Emerging trends of nanoparticles application in food technology: Safety paradigms.” Nanotoxicology, 3(1), 10–18.
Mulvaney, P. (1996). “Surface plasmon spectroscopy of nanosized metal particles.” Langmuir, 12(3), 788–800.
Murray, C. B., Norris, D. J., and Bawendi, M. G. (1993). “Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites.” J. Am. Chem. Soc., 115(19), 8706–8715.
Nanny, M. A., Bortiatynski, J. M., Tien, M., and Hatcher, P. G. (1996). “Investigations of enzymatic alterations of 2.4- dichlorophenol using 13C-nuclear magnetic resonance in combination with site-specific 13C labeling: Understanding the environmental fate of this pollutant.” Environ. Toxicol. Chem., 15(11), 1857–1864.
Ngim, K. K., Mabury, S. A., and Crosby, D. G. (2000). “Elucidation of fipronil photodegradation pathways.” J. Agric. Food Chem., 48(10), 4661–4665.
Niyogi, S., et al. (2001). “Chromatographic purification of soluble single-walled carbon nanotubes (s-SWNTs).” J. Am. Chem. Soc., 123(4), 733–734.
Novak, J. P., Nickerson, C., Franzen, S., and Feldheim, D. L. (2001). “Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography.” Anal. Chem., 73(23), 5758–5761.
Nowack, B., and Bucheli, T. D. (2007). “Occurrence, behavior and effects of nanoparticles in the environment.” Environ. Pollut., 150(1), 5–22.
Nunome, Y., Kodama, K., Park, H., Matsumoto, K., Chun Lee, S., and Kitagawa, K. (2011). “Direct detection of nanoparticles and components in smoke by time-of-flight mass spectrometry with soft plasma ionization.” Microchem. J., 99(2), 470–477.
Ochiai, N., Ieda, T., Sasamoto, K., Fushimi, A., Hasegawa, S., Tanabe, K., and Kobayashi, S. (2007). “Comprehensive two-dimensional gas chromatography coupled to high-resolution time-of-flight mass spectrometry and simultaneous nitrogen phosphorous and mass spectrometric detection for characterization of nanoparticles in roadside atmosphere.” J. Chromatogr. A, 1150(1–2), 13–20.
Ouyang, G., and Pawliszyn, J. (2007). “Configuration and sampling methods for passive sampling technique.” J. Chromatogr. A, 1168(1–2), 226–235.
Pawliszyn, J. (1997). Solid phase microextraction—Theory and practice, Wiley, New York.
Peck, A. M. (2006). “Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices.” Anal. Bioanal. Chem., 386(4), 907–939.
Peters, R., et al. (2011). “Identification and characterization of organic nanoparticles in food.” Trends Anal. Chem., 30(1), 100–112.
Petrovic, M., et al. (2010). “Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples.” J. Chromatogr. A, 1217(25), 4004–4017.
Piccolo, A., Conte, P., Cozzolino, A., and Paci, M. (2001). “Combined effects of an oxidative enzyme and dissolved humic substances on 13C-labelled 2, 4-D herbicide as revealed by high-resolution 13C NMR spectroscopy.” J. Ind. Microbiol. Biotechnol., 26(1–2), 70–76.
Pico, Y., and Barcelo, D. (2008). “The expanding role of LC-MS in analyzing metabolites and degradation products of food contaminants.” Trends Anal. Chem., 27(10), 821–835.
Preiss, A., Levsen, K., Humper, E., and Spraul, M. (1996). “Application of high-field proton nuclear magnetic resonance ((1)H-NMR) spectroscopy for the analysis of explosives and related compounds in groundwater samples—A comparison with the high-performance liquid chromatography (HPLC) method.” Anal. Bioanal. Chem., 356(7), 445–451.
Remberger, M., Sernbeck, J., Palm, A., Kaj, L., Strömberg, K., and Brorström-Lunden, E. (2004). “The environmental occurrence of hexabromocyclododecane in Sweden.” Chemosphere, 54(1), 9–21.
Richardson, S. D. (2007). “Water analysis: Emerging contaminants and current issues.” Anal. Chem., 79(12), 4295–4324.
Richardson, S. D., and Ternes, T. A. (2005). “Water analysis: Emerging contaminants and current issues.” Anal. Chem., 77(12), 3807–3838.
Rietjens, I. M. C. M., Cnubben, N. H. P., de Jager, P. A., Boersma, M. G., and Vervoort, J. (1993). Developments and ethical considerations in toxicology, M. I. Weitzner, ed., Springer, New York, 94.
Sakai-Kato, K., Ota, S., Takeuchi, T., and Kawanishi, T. (2011). “Size separation of colloidally dispersed nanoparticles using a monolithic capillary column.” J. Chromatogr. A, 1218(32), 5520–5526.
Schocken, M. J. (2001). Pesticide biotransformation in plants and microorganisms, J. C. Hall, R. E. Hoagland, and R. M. Zablotowicz, eds., Oxford University Press, New York, 30.
Selifonov, S. A., et al. (1998). “Use of 13C nuclear magnetic resonance to assess fossil fuel biodegradation: Fate of [1-13C]acenaphthene in creosote polycyclic aromatic compound mixtures degraded by bacteria.” Appl. Environ. Microbiol., 64(4), 1447–1453.
Sjödin, A., Carlsson, H., Thuresson, K., Sjölin, S., Bergman, Å., and Östman, C. (2001). “Flame retardants in indoor air at an electronics recycling plant and at other work environments.” Environ. Sci. Technol., 35(3), 448–454.
Skutlarek, D., Exner, M., and Färber, H. (2006). “Perfluorinated surfactants in surface and drinking waters.” Environ. Sci. Pollut. Res., 13(5), 299–307.
So, M. K., et al. (2004). “Health risks in infants associated with exposure to perfluorinated compounds in human breast milk from Zhoushan, China.” Environ. Sci. Technol., 38, 4056–4063.
Steinigeweg, D., Schütz, M., Salehi, M., and Schlücker, S. (2011). “Fast and cost-effective purification of gold nanoparticles in the 20-250 nm size range by continuous density gradient centrifugation.” Small, 7(17), 2443–2448.
Strandberg, B., Dodder, N. G., Basu, I., and Hites, R. A. (2001). “Concentrations and spatial variations of polybrominated diphenyl ethers and other organohalogen compounds in Great Lakes air.” Environ. Sci. Technol., 35(6), 1078–1083.
Sun, X., et al. (2009). “Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals.” Angew. Chem. Int. Ed., 48(5), 939–942.
Suter, M. J. F. (2008). “Effect-oriented environmental analysis.” Anal. Bioanal. Chem., 390(8), 1957–1958.
Sweeney, S. F., Woehrle, G. H., and Hutchison, J. E. (2006). “Rapid purification and size separation of gold nanoparticles via diafiltration.” J. Am. Chem. Soc., 128(10), 3190–3197.
Tiede, K., Hassellöv, M., Breitbarth, E., Chaudhry, Q., and Boxall, A. B. (2009). “Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles.” J. Chromatogr. A, 1216(3), 503–509.
Trefry, J. C., et al. (2010). “Size selection and concentration of silver nanoparticles by tangential flow ultrafiltration for SERS-based biosensors.” J. Am. Chem. Soc., 132(32), 10970–10972.
Tsunoyama, H., Negishi, Y., and Tsukuda, T. (2006). “Chromatographic isolation of “missing” Au55 clusters protected by alkanethiolates.” J. Am. Chem. Soc., 128(18), 6036–6037.
Tuduri, L., Harner, T., and Hung, H. (2006). “Polyurethane foam (PUF) disks passive air samplers: Wind effect on sampling rates.” Environ. Pollut., 144(2), 377–383.
Van Koetsem, F., and Du Laing, G. (2013). “Partitioning and dissolution behavior of metal-based engineered nanoparticles in sediment and soil suspensions.” Proc., 16th Int. Conf. on Heavy Metals in the Environment, Vol. 1, EDP Sciences, France.
Vorbau, M., Hillemann, L., and Stintz, M. (2009). “Method for the characterization of the abrasion induced nanoparticles release into air from surface coatings.” J. Aerosol Sci., 40(3), 209–217.
Wang, C., Shang, C., and Westerhoff, P. (2010). “Quantification of fullerene aggregate nC60 in wastewater by high-performance liquid chromatography with UV-vis spectroscopic and mass spectrometric detection.” Chemosphere, 80(3), 334–339.
Wania, F., Lei, Y. D., Teixeira, C., and Muir, D. C. G. (2003). “Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere.” Environ. Sci. Technol., 37(7), 1352–1359.
Watanbale, N., and Niki, E. (1978). “Direct-coupling of FT-NMR to high performance liquid chromatography.” Proc. Jpn. Acad Ser. B., 54(4), 194–199.
Wei, G.-T., and Liu, F.-K. (1999). “Separation of nanometer gold particles by size exclusion chromatography.” J. Chromatogr. A, 836(2), 253–260.
Wei, G.-T., Liu, F.-K., and Wang, C. R. C. (1999). “Shape separation of nanometer gold particles by size-exclusion chromatography.” Anal. Chem., 71(11), 2085–2091.
Wilcoxon, J. P., Martin, J. E., and Provencio, P. (2000). “Size distributions of gold nanoclusters studied by liquid chromatography.” Langmuir, 16(25), 9912–9920.
Wilcoxon, J. P., and Provencio, P. (2003). “Etching and aging effects in nanosize Au clusters investigated using high-resolution size-exclusion chromatography.” J. Phys. Chem. B, 107(47), 12949–12957.
Xie, Q.-L., Liu, J., Xu, X.-X., Han, G.-B., Xia, H.-P., and He, X.-M. (2009). “Size separation of Fe2O3 nanoparticles via membrane processing.” Sep. Purif. Technol., 66(1), 148–152.
Xiong, B., Cheng, J., Qiao, Y., Zhou, R., He, Y., and Yeung, E. S. (2011). “Separation of nanorods by density gradient centrifugation.” J. Chromatogr. A, 1218(25), 3823–3829.
Xu, X., et al. (2004). “Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments.” J. Am. Chem. Soc., 126(40), 12736–12737.
Yamashita, N., Kannan, K., Taniyasu, S., Horii, Y., Petrick, G., and Gamo, T. (2005). “A global survey of perfluorinated acids in oceans.” Mar. Pollut. Bull., 51(8–12), 658–668.
Yu, L., and Andriola, A. (2010). “Quantitative gold nanoparticle analysis methods: A review.” Talanta, 82(3), 869–875.
Zhang, W.-X. (2003). “Nanoscale iron particles for environmental remediation: An overview.” J. Nanoparticle Res., 5(3–4), 323–332.
Zhao, B., et al. (2001). “Chromatographic purification and properties of soluble single-walled carbon nanotubes.” J. Am. Chem. Soc., 123(47), 11673–11677.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 20Issue 1January 2016

History

Received: Jun 20, 2014
Accepted: Mar 9, 2015
Published online: May 6, 2015
Discussion open until: Oct 6, 2015
Published in print: Jan 1, 2016

Permissions

Request permissions for this article.

Authors

Affiliations

Nidhi Chadha
Ph.D. Student, Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Rd., Delhi 110054, India; and Dept. of Chemistry, Univ. of Delhi, Delhi 110007, India.
Sangeeta Lal [email protected]
Assistant Professor, Dept. of Physics, B.S. College, Magadh Univ., Danapur, Patna, Bihar 800012, India (corresponding author). E-mail: [email protected]
Anil K. Mishra
Scientist, ‘G’ Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, Brig. S. K. Mazumdar Rd., Delhi 110054, India.
Rama Pulicharla
Ph.D. Student, Institut National de la Recherche Scientifique, Eau Terre et Environnement, 490, De la Couronne, Quebec, QC, Canada G1W 1S7.
Maximiliano Cledon
Visiting Researcher, Institut National de la Recherche Scientifique, Eau Terre et Environnement, 490, De la Couronne, Quebec, QC, Canada G1W 1S7; and CONICET, Dto. de Ciencias Marinas, Universidad Nacional de Mar del Plata, Funes 3350, 7600 Mar del Plata, Argentina.
Satinder Kaur Brar
Professor, Institut National de la Recherche Scientifique, Eau Terre et Environnement, 490, De la Couronne, Quebec, QC, Canada G1W 1S7.
R. Y. Surampalli, Dist.M.ASCE
Adjunct Faculty, Dept. of Civil Engineering, Univ. of Nebraska-Lincoln, N104 SEC, P.O. Box 886105, Lincoln, NE 68588-6105.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share