Technical Papers
Jan 8, 2015

Bioavailability of Engineered Nanoparticles in Soil Systems

Publication: Journal of Hazardous, Toxic, and Radioactive Waste
Volume 20, Issue 1

Abstract

Nanotechnologies form a field of research that is still emerging with major gaps in knowledge regarding the behavior and potential toxicological risks of engineered nanoparticles (ENPs) in soils. While most of the studies are conducted in porous media (quartz and glass beads) and culture media, less frequently are the studies carried out in natural soils. However, the complex interactions occurring in soils, mediated by both soil components and soil organisms, are essential in bioavailability processes. Therefore, this paper is intended to highlight particularly the bioavailability of ENPs in soils. The potential release pathways of ENPs to soils are described and are faced with a lack of specific regulation and definitive nomenclature. This paper reviews a number of studies regarding ENP toxicological bioavailability on microorganisms and microfauna, mesofauna, and macrofauna inhabiting the soil, as well as on soil-plant systems. The paper especially discusses ENP behavior in soils that affect ENP bioavailability to the edaphic biota. Particular attention is paid to the factors regulating these processes [i.e., (1) ENP-dependent factors, (2) soil properties, and (3) soil components], focusing on organic matter.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The writers would like to thank Dr. S. K. Brar and Dr. M. Cledon for the invitation to write this paper. The writers especially wish to thank Dr. Gregory Seiller for support with the graphics, as well as the comments and suggestions of the editor and anonymous referees.

References

Asli, S., and Neumann, P. M. (2010). “Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development.” Plant Soil, 336(1–2), 313–322.
Batley, G. E., Kirby, J. K., and McLaughlin, M. J. (2013). “Fate and risks of nanomaterials in aquatic and terrestrial environments.” Acc. Chem. Res., 46(3), 854–862.
Ben-Moshe, T., Dror, I., and Berkowitz, B. (2010). “Transport of metal oxide nanoparticles in saturated porous media.” Chemosphere, 81(3), 387–393.
Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., and Berkowitz, B. (2013). “Effects of metal oxide nanoparticles on soil properties.” Chemosphere, 90(2), 640–646.
Benn, T., Cavanagh, B., Hristovski, K., Posner, J. D., and Westerhoff, P. (2010). “The release of nanosilver from consumer products used in the home.” J. Environ. Qual., 39(6), 1875–1882.
Benoit, R., Wilkinson, K. J., and Sauvé, S. (2013). “Partitioning of silver and chemical speciation of free Ag in soils amended with nanoparticles.” Chem. Cent. J., 7, 75–81.
Bergeson, L., and Hester, T. (2008). Nanotechnology deskbook, Eli Press, Washington, DC.
Berti, W. R., and Jacobs, L. W. (1996). “Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge applications.” J. Environ. Qual., 25(5), 1025–1032.
Blum, W. E. H. (2005). “Functions of soil for society and the environment.” Rev. Environ. Sci. Bio/Technol., 4(3), 75–79.
Borm, P., et al. (2006). “Research strategies for safety evaluation of nanomaterials. Part V: Role of dissolution in biological fate and effects of nanoscale particles.” Toxicol. Sci., 90(1), 23–32.
Boxall, A. B. A., Tiede, K., and Chaudhry, Q. (2007). “Engineered nanomaterials in soils and water: How do they behave and could they pose a risk to human health?” Nanomedicine, 2(6), 919–927.
Bradford, S. A., and Bettahar, M. (2006). “Concentration dependent transport of colloids in saturated porous media.” J. Contam. Hydrol., 82(1–2), 99–117.
Bradford, S. A., Kim, H. N., Haznedaroglu, B. Z., Torkzaban, S., and Walker, S. L. (2009). “Coupled factors influencing concentration-dependent colloid transport and retention in saturated porous media.” Environ. Sci. Technol., 43(18), 6996–7002.
Brar, S. K., Verma, M., Tyagi, R. D., and Surampalli, R. Y. (2010). “Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts.” Waste Manage., 30(3), 504–520.
Buffet, P. E. (2012). “Evaluation of the environmental risk of metal nanoparticles: bioavailability and potential risk for two key species of estuarine ecosystems.” Ph.D. thesis, Nantes Univ., Nantes, France (in French).
Buzea, C., Pacheco, I. I., and Robbie, K. (2007). “Nanomaterials and nanoparticles: Sources and toxicity.” Biointerphases, 2(4), MR17–MR71.
Bystrzejewska-Piotrowska, G., Golimowski, J., and Urban, P. L. (2009). “Nanoparticles: Their potential toxicity, waste and environmental management.” Waste Manage., 29(9), 2587–2595.
Calder, A. J., Dimkpa, C. O., McLean, J. E., Britt, D. W., Johnson, W., and Anderson, A. J. (2012). “Soil components mitigate the antimicrobial effects of silver nanoparticles towards a beneficial soil bacterium, Pseudomonas chlororaphis O6.” Sci. Total Environ., 429, 215–222.
Chang, Y.-N., Zhang, M., Xia, L., Zhang, J., and Xing, G. (2012). “The toxic effects and mechanisms of CuO and ZnO nanoparticles.” Materials, 5(12), 2850–2871.
Chau, C.-F., Wu, S.-H., and Yen, G.-C. (2007). “The development of regulations for food nanotechnology.” Trends Food Sci. Technol., 18(5), 269–280.
Chowdhury, I., Hong, Y., Honda, R. J., and Walker, S. L. (2011). “Mechanisms of TiO2 nanoparticle transport in porous media: Role of solution chemistry, nanoparticle concentration, and flow rate.” J. Colloid Interface Sci., 360(2), 548–555.
Chung, H., Son, Y., Yoon, T. K., Kim, S., and Kim, W. (2011). “The effect of multi-walled carbon nanotubes on soil microbial activity.” Ecotoxicol. Environ. Saf., 74(4), 569–575.
Chunjaturas, W., Ferguson, J. A., Rattanapichai, W., Sadowsky, M. J., and Sajjaphan, K. (2014). “Shift of bacterial community structure in two Thai soil series affected by silver nanoparticles using ARISA.” World J. Microbiol. Biotechnol., 30(7), 2119–2124.
Coleman, J. G., et al. (2010). “Assessing the fate and effects of nano aluminum oxide in the terrestrial earthworm, Eisenia fetida.” Environ. Toxicol. Chem., 29(7), 1575–1580.
Cornelis, G., et al. (2012). “Retention and dissolution of engineered silver nanoparticles in natural soils.” Soil Sci. Soc. Am. J., 76(3), 891–902.
Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., Van den Brink, N., and Nickel, C. (2014). “Fate and bioavailability of engineered nanoparticles in soils: A review.” Crit. Rev. Environ. Sci. Technol., 44(24), 2720–2764.
Cornelis, G., Kirby, J. K., Beak, D., Chittleborough, D., and McLaughlin, M. J. (2010). “A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils.” Environ. Chem., 7(3), 298–308.
Cornelis, G., Ryan, B., McLaughlin, M. J., Kirby, J. K., Beak, D., and Chittleborough, D. (2011). “Solubility and batch retention of CeO2 nanoparticles in soils.” Environ. Sci. Technol., 45(7), 2777–2782.
Council Directive. (1986). “Council directive 86/278/EEC of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture.” Official J. L, 181(04–07), 0006–0012.
Coutris, C., Hertel-Aas, T., Lapied, E., Joner, E. J., and Oughton, D. H. (2012a). “Bioavailability of cobalt and silver nanoparticles to the earthworm Eisenia fetida.” Nanotoxicology, 6(2), 186–195.
Coutris, C., Joner, E. J., and Oughton, D. H. (2012b). “Aging and soil organic matter content affect the fate of silver nanoparticles in soil.” Sci. Total Environ., 420, 327–333.
Cushen, M., Kerry, J., Morris, M., Cruz-Romero, M., and Cummins, E. (2012). “Nanotechnologies in the food industry—Recent developments, risks and regulation.” Trends Food Sci. Technol., 24(1), 30–46.
Dahle, J. T., and Arai, Y. (2014). “Effects of Ce(III) and CeO2 nanoparticles on soil-denitrification kinetics.” Arch. Environ. Contam. Toxicol., 67(4), 474–482.
Darlington, T. K., Neigh, A. M., Spencer, M. T., Nguyen, O. T., and Oldenburg, S. J. (2009). “Nanoparticle characteristics affecting environmental fate and transport through soil.” Environ. Toxicol. Chem., 28(6), 1191–1199.
Deonarine, A., Lau, B. L. T., Aiken, G. R., Ryan, J. N., and Hsu-Kim, H. (2011). “Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles.” Environ. Sci. Technol., 45(8), 3217–3223.
de Santiago Martín, A., Cheviron, N., Quintana, J. R., González, C., Lafuente, A. L., and Mougin, C. (2013). “Metal contamination disturbs biochemical and microbial properties of calcareous agricultural soils of the Mediterranean area.” Arch. Environ. Contam. Toxicol., 64(3), 388–398.
de Santiago-Martín, A., Valverde-Asenjo, I., Quintana, J. R., Vázquez, A., Lafuente, A. L., and González-Huecas, C. (2014). “Carbonate, organic and clay fractions determine metal bioavailability in periurban calcareous agricultural soils in the Mediterranean area.” Geoderma, 221–222(1), 103–112.
Dietz, K., and Herth, S. (2011). “Plant nanotoxicology.” Trends Plant Sci., 16(11), 582–589.
Dinesh, R., Anandaraj, M., Srinivasan, V., and Hamza, S. (2012). “Engineered nanoparticles in the soil and their potential implications to microbial activity.” Geoderma, 173–174, 19–27.
Du, W., Sun, Y., Ji, R., Zhu, J., Wu, J., and Guo, H. (2011). “TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil.” J. Environ. Monit., 13(4), 822–828.
Dunphy Guzman, K. A., Finnegan, M. P., and Banfield, J. F. (2006). “Influence of surface potential on aggregation and transport of titania nanoparticles.” Environ. Sci. Technol., 40(24), 7688–7693.
Eijsackers, H. (2010). “Earthworms as colonisers: Primary colonisation of contaminated land, and sediment and soil waste deposits.” Sci. Total Environ., 408(8), 1759–1769.
Eisenhauer, N., Milcu, A., Nitschke, N., Sabais, A. C. W., Scherber, C., and Scheu, S. (2009). “Earthworm and belowground competition effects on plant productivity in a plant diversity gradient.” Oecologia, 161(2), 291–301.
Elimelech, M., and O’Melia, C. R. (1990). “Effect of particle size on collision efficiency in the deposition of Brownian particles with electrostatic energy barriers.” Langmuir, 6(6), 1153–1163.
El-Temsah, Y. S., and Joner, E. J. (2012). “Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil.” Environ. Toxicol., 27(1), 42–49.
El-Temsah, Y. S., and Joner, E. J. (2013). “Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods.” Chemosphere, 92(1), 131–137.
Environment Canada and Health Canada. (2007). Proposed regulatory framework for nanomaterials under the Canadian Environmental Protection Act, 1999, Ottawa.
European Commission. (2011). “Commission recommendation of 18 October 2011 on the definition of nanomaterial (2011/696/EU).” European Union, Luxembourg.
European Commission. (2014). “Soil.” 〈http://ec.europa.eu/environment/soil/index_en.htm〉 (Jul. 8, 2014).
Farré, M., Gajda-Schrantz, K., Kantiani, L., and Barceló, D. (2009). “Ecotoxicity and analysis of nanomaterials in the aquatic environment.” Anal. Bioanal. Chem., 393(1), 81–95.
Finvers, M. A. (2008). “Application of e2DPSIR for analysis of soil protection issues and an assessment of British Columbia’s soil protection legislation.” M.Sc. thesis, Cranfield Univ., Cranfield, Bedford, U.K.
Fleischer, A. (1999). “The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II.” Plant Physiol., 121(3), 829–838.
French, R. A., Jacobson, A. R., Kim, B., Isley, S. L., Penn, R. L., and Baveye, P. C. (2009). “Influence of ionic strength, pH, andcation valence on aggregation kinetics of titanium dioxide nanoparticles.” Environ. Sci. Technol., 43(5), 1354–1359.
Frenk, S., Ben-Moshe, T., Dror, I., Berkowitz, B., and Minz, D. (2013). “Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types.” PLoS ONE, 8(12), e84441.
Frische, T., Mebes, K.-H., and Filser, J. (2003). “Assessing the bioavailability of contaminants in soils: A review of recent contents.” C. Hufenbach, ed., Federal Environmental Agency, Bremen, Germany (in German).
Ganzleben, C., and Hansen, S. F. (2012). Environmental exposure to nanomaterials—Data scoping study: Final report, Milieu, Brussels, Belgium.
Gao, F., et al. (2006). “Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach: Inducing complex of rubisco-rubisco activase.” Biol. Trace Elem. Res., 111(1–3), 239–253.
Gao, F., et al. (2008). “Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase?” Biometals, 21(2), 211–217.
García-Gómez, C., Babin, M., Obrador, A., Alvarez, J. M., and Fernández, M. D. (2014). “Toxicity of ZnO nanoparticles, ZnO bulk, and Zncl2 on earthworms in a spiked natural soil and toxicological effects of leachates on aquatic organisms.” Arch. Environ. Contam. Toxicol., 67(4), 465–473.
Ge, Y., Priester, J. H., Van De Werfhorst, L. C., Schimel, J. P., and Holden, P. A. (2013). “Potential mechanisms and environmental controls of TiO2 nanoparticle effects on soil bacterial communities.” Environ. Sci. Technol., 47(24), 14411–14417.
Ghormade, V., Deshpande, M. V, and Paknikar, K. M. (2011). “Perspectives for nano-biotechnology enabled protection and nutrition of plants.” Biotechnol. Adv., 29(6), 792–803.
Gladkova, M. M., and Terekhova, V. A. (2013). “Engineered nanomaterials in soil: Sources of entry and migration pathways.” Moscow Univ. Soil Sci. Bull., 68(3), 129–134.
Glenn, J. B., and Klaine, S. J. (2013). “Abiotic and biotic factors that influence the bioavailability of gold nanoparticles to aquatic macrophytes.” Environ. Sci. Technol., 47(18), 10223–10230.
Gomes, S. I. L., Novais, S. C., Scott-Fordsmand, J. J., De Coen, W., Soares, A. M. V. M., and Amorim, M. J. B. (2012). “Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): Differential gene expression through microarray analysis.” Comp. Biochem. Physiol. Part C Toxicol. Pharmacol., 155(2), 219–227.
Gottschalk, F., Kost, E., and Nowack, B. (2013). “Engineered nanomaterials in water and soils: A risk quantification based on probabilistic exposure and effect modeling.” Environ. Toxicol. Chem., 32(6), 1278–1287.
Gottschalk, F., and Nowack, B. (2011). “The release of engineered nanomaterials to the environment.” J. Environ. Monit., 13(5), 1145–1155.
Government of Canada. (2013). “Nanoregulations.” 〈http://nanoportal.gc.ca/default.asp?lang=En&n=23410D1F-1〉 (Jun. 20, 2014).
Harris, A. T., and Bali, R. (2008). “On the formation and extent of uptake of silver nanoparticles by live plants.” J. Nanopart. Res., 10(4), 691–695.
He, S., Feng, Y., Ren, H., Zhang, Y., Gu, N., and Lin, X. (2011). “The impact of iron oxide magnetic nanoparticles on the soil bacterial community.” J. Soils Sediments, 11(8), 1408–1417.
Heckmann, L.-H., Hovgaard, M. B., Sutherland, D. S., Autrup, H., Besenbacher, F., and Scott-Fordsmand, J. J. (2011). “Limit-test toxicity screening of selected inorganic nanoparticles to the earthworm Eisenia fetida.” Ecotoxicology, 20(1), 226–233.
Hong, F., et al. (2005). “Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach.” Biol. Trace Elem. Res., 105(1–3), 269–279.
Hooper, H. L., et al. (2011). “Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix.” Environ. Int., 37(6), 1111–1117.
Hu, C. W., et al. (2010). “Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida.” Soil Biol. Biochem., 42(4), 586–591.
Hydutsky, B. W., Mack, E. J., Beckerman, B. B., Skluzacek, J. M., and Mallouk, T. E. (2007). “Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures.” Environ. Sci. Technol., 41(18), 6418–6424.
Jackson, P., et al. (2013). “Bioaccumulation and ecotoxicity of carbon nanotubes.” Chem. Cent. J., 7(1), 154–165.
Jaisi, D. P., and Elimelech, M. (2009). “Single-walled carbon nanotubes exhibit limited transport in soil columns.” Environ. Sci. Technol., 43(24), 9161–9166.
Jatav, G. K., and De, N. (2013). “Application of nano-technology in soil-plant system.” Asian J. Soil Sci., 8(1), 176–184.
Jiang, J., Oberdörster, G., and Biswas, P. (2008). “Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies.” J. Nanopart. Res., 11(1), 77–89.
Jiang, X., Tong, M., and Kim, H. (2012a). “Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media.” J. Colloid Interface Sci., 386(1), 34–43.
Jiang, X., Tong, M., Lu, R., and Kim, H. (2012b). “Transport and deposition of ZnO nanoparticles in saturated porous media.” Colloids Surf. A, 401, 29–37.
Jiang, X., Wang, X., Tong, M., and Kim, H. (2013). “Initial transport and retention behaviors of ZnO nanoparticles in quartz sand porous media coated with Escherichia coli biofilm.” Environ. Pollut., 174, 38–49.
Jin, L., Son, Y., DeForest, J. L., Kang, Y. J., Kim, W., and Chung, H. (2014). “Single-walled carbon nanotubes alter soil microbial community composition.” Sci. Total Environ., 466–467, 533–538.
Jin, L., Son, Y., Yoon, T. K., Kang, Y. J., Kim, W., and Chung, H. (2013). “High concentrations of single-walled carbon nanotubes lower soil enzyme activity and microbial biomass.” Ecotoxicol. Environ. Saf., 88, 9–15.
Johansen, A., et al. (2008). “Effects of C60 fullerene nanoparticles on soil bacteria and protozoans.” Environ. Toxicol. Chem., 27(9), 1895–1903.
Judy, J. (2013). “Bioavailability of manufactured nanomaterials in terrestrial ecosystems.” Ph.D. thesis, Univ. of Kentucky, Lexington, KY.
Judy, J. D., Unrine, J. M., and Bertsch, P. M. (2011). “Evidence for biomagnification of gold nanoparticles within a terrestrial food chain.” Environ. Sci. Technol., 45(2), 776–781.
Kabata-Pendias, A. (2004). “Soil-plant transfer of trace elements—An environmental issue.” Geoderma, 122(2–4), 143–149.
Kabata-Pendias, A., and Pendias, H. (2001). Trace elements in soils and plants, CRC Press, Boca Raton FL.
Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., and Kumar, R. (2013). “Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review.” Prog. Polym. Sci., 38(8), 1232–1261.
Khan, S., Mukherjee, A., and Chandrasekaran, N. (2011). “Silver nanoparticles tolerant bacteria from sewage environment.” J. Environ. Sci., 23(2), 346–352.
Khare, P., Sonane, M., Pandey, R., Ali, S., Gupta, K. C., and Satish, A. (2011). “Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans.” J. Biomed. Nanotechnol., 7(1), 116–117.
Khodakovskaya, M., et al. (2009). “Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth.” ACS Nano, 3(10), 3221–3227.
Khodakovskaya, M. V., de Silva, K., Biris, A. S., Dervishi, E., and Villagarcia, H. (2012). “Carbon nanotubes induce growth enhancement of tobacco cells.” ACS Nano, 6(3), 2128–2135.
Kim, S. W., Nam, S.-H., and An, Y.-J. (2012). “Interaction of silver nanoparticles with biological surfaces of Caenorhabditis elegans.” Ecotoxicol. Environ. Saf., 77, 64–70.
Klaine, S. J., et al. (2008). “Nanomaterials in the environment: Behavior, fate, bioavailability, and effects.” Environ. Toxicol. Chem., 27(9), 1825–1851.
Kool, P. L., Ortiz, M. D., and van Gestel, C. A. M. (2011). “Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil.” Environ. Pollut., 159(10), 2713–2719.
Lanoy, L. (2014). “The right of nanomaterials: Between regulation and care.” Droit de l’Environnement, 221, 98–105.
Lapied, E., et al. (2011). “Ecotoxicological effects of an aged TiO2 nanocomposite measured as apoptosis in the anecic earthworm Lumbricus terrestris after exposure through water, food and soil.” Environ. Int., 37(6), 1105–1110.
Lecoanet, H. F., Bottero, J.-Y., and Wiesner, M. R. (2004). “Laboratory assessment of the mobility of nanomaterials in porous media.” Environ. Sci. Technol., 38(19), 5164–5169.
Lerner, R. N., Lu, Q., Zeng, H., and Liu, Y. (2012). “The effects of biofilm on the transport of stabilized zerovalent iron nanoparticles in saturated porous media.” Water Res., 46(4), 975–985.
Levard, C., Hotze, E. M., Lowry, G. V, and Brown, G. E. (2012). “Environmental transformations of silver nanoparticles: Impact on stability and toxicity.” Environ. Sci. Technol., 46(13), 6900–6914.
Li, L.-Z., et al. (2011). “Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn.” Environ. Int., 37(6), 1098–1104.
Liang, L., Luo, L., and Zhang, S. (2011). “Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales.” Colloids Surf. A Physicochem. Eng. Aspects, 384(1–3), 126–130.
Lin, D., Tian, X., Wu, F., and Xing, B. (2010). “Fate and transport of engineered nanomaterials in the environment.” J. Environ. Qual., 39(6), 1896–1908.
Lin, D., and Xing, B. (2007). “Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth.” Environ. Pollut., 150(2), 243–250.
Lin, D., and Xing, B. (2008). “Root uptake and phytotoxicity of ZnO nanoparticles.” Environ. Sci. Technol., 42(15), 5580–5585.
Liu, J., et al. (2012). “Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles.” Chemosphere, 87(8), 918–924.
Liu, Q., et al. (2010). “Study of the inhibitory effect of water-soluble fullerenes on plant growth at the cellular level.” ACS Nano, 4(10), 5743–5748.
López-Moreno, M. L., de la Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. (2010). “X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species.” J. Agric. Food Chem., 58(6), 3689–3693.
Lyon, D. Y., Adams, L. K., Falkner, J. C., and Alvarez, P. J. J. (2006). “Antibacterial activity of fullerene water suspensions: Effects of preparation method and particle size.” Environ. Sci. Technol., 40(14), 4360–4366.
Ma, H., Kabengi, N. J., Bertsch, P. M., Unrine, J. M., Glenn, T. C., and Williams, P. L. (2011). “Comparative phototoxicity of nanoparticulate and bulk ZnO to a free-living nematode Caenorhabditis elegans: The importance of illumination mode and primary particle size.” Environ. Pollut., 159(6), 1473–1480.
Ma, H., Williams, P. L., and Diamond, S. A. (2013). “Ecotoxicity of manufactured ZnO nanoparticles—A review.” Environ. Pollut., 172, 76–85.
Mackay, C. E., Johns, M., Salatas, J. H., Bessinger, B., and Perri, M. (2006). “Stochastic probability modeling to predict the environmental stability of nanoparticles in aqueous suspension.” Integr. Environ. Assess. Manage., 2(3), 293–298.
Manzo, S., et al. (2011). “Investigation of ZnO nanoparticles’ ecotoxicological effects towards different soil organisms.” Environ. Sci. Pollut. Res., 18(5), 756–763.
Martin Calvarro, L., et al. (2014). “Biological activity in metal-contaminated calcareous agricultural soils: The role of the organic matter composition and the particle size distribution.” Environ. Sci. Pollut. Res., 21(9), 6176–6187.
Masrahi, A., VandeVoort, A. R., and Arai, Y. (2014). “Effects of silver nanoparticle on soil-nitrification processes.” Arch. Environ. Contam. Toxicol., 66(4), 504–513.
McShane, H., Sarrazin, M., Whalen, J. K., Hendershot, W. H., and Sunahara, G. I. (2012). “Reproductive and behavioral responses of earthworms exposed to nano-sized titanium dioxide in soil.” Environ. Toxicol. Chem., 31(1), 184–193.
Mitzel, M. R., and Tufenkji, N. (2014). “Transport of industrial PVP-stabilized silver nanoparticles in saturated quartz sand coated with Pseudomonas aeruginosa PAO1 biofilm of variable age.” Environ. Sci. Technol., 48(5), 2715–2723.
Mohanty, S. R., et al. (2014). “Methane oxidation and abundance of methane oxidizers in tropical agricultural soil (vertisol) in response to CuO and ZnO nanoparticles contamination.” Environ. Monit. Assess., 186(6), 3743–3753.
Moore, M. N. (2006). “Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?” Environ. Int., 32(8), 967–976.
Mueller, N. C., and Nowack, B. (2008). “Exposure modeling of engineered nanoparticles in the environment.” Environ. Sci. Technol., 42(12), 4447–4453.
Nair, R., Varghese, S. H., Nair, B. G., Maekawa, T., Yoshida, Y., and Kumar, D. S. (2010). “Nanoparticulate material delivery to plants.” Plant Sci., 179(3), 154–163.
Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., and Renella, G. (2003). “Microbial diversity and soil functions.” Eur. J. Soil Sci., 54(4), 655–670.
Navarro, E., et al. (2008a). “Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi.” Ecotoxicology, 17(5), 372–386.
Navarro, E., et al. (2008b). “Toxicity of silver nanoparticles to Chlamydomonas reinhardtii.” Environ. Sci. Technol., 42(23), 8959–8964.
Neal, A. L. (2008). “What can be inferred from bacterium-nanoparticle interactions about the potential consequences of environmental exposure to nanoparticles?” Ecotoxicology, 17(5), 362–371.
Novak, S., et al. (2012a). “Cell membrane integrity and internalization of ingested TiO2 nanoparticles by digestive gland cells of a terrestrial isopod.” Environ. Toxicol. Chem., 31(5), 1083–1090.
Novak, S., Drobne, D., and Menard, A. (2012b). “Prolonged feeding of terrestrial isopod (Porcellio scaber, Isopoda, Crustacea) on TiO2 nanoparicles. Absence of toxic effect.” ZooKeys, 176, 261–273.
Oberdörster, E., Zhu, S., Blickley, T. M., McClellan-Green, P., and Haasch, M. L. (2006). “Ecotoxicology of carbon-based engineered nanoparticles: Effects of fullerene (C60) on aquatic organisms.” Carbon, 44(6), 1112–1120.
Ostrowski, A. D., Martin, T., Conti, J., Hurt, I., and Harthorn, B. H. (2009). “Nanotoxicology: Characterizing the scientific literature, 2000–2007.” J. Nanopart. Res., 11(2), 251–257.
Park, J. Y. (2009). “Occupational exposure assessment for nanoparticles.” Ph.D. thesis, Univ. of Minnesota, Mineapolis.
Park, J. Y., Ramachandran, G., Raynor, P. C., Eberly, L. E., and Olson, G. (2010). “Comparing exposure zones by different exposure metrics using statistical parameters: Contrast and precision.” Ann. Occup. Hyg., 54(7), 799–812.
Patel, R. P. (2008). “Nanoparticles and its applications in field of pharmacy.” Chem. Anal., 6(1).
Pawlett, M., Ritz, K., Dorey, R. A., Rocks, S., Ramsden, J., and Harris, J. A. (2013). “The impact of zero-valent iron nanoparticles upon soil microbial communities is context dependent.” Environ. Sci. Pollut. Res., 20(2), 1041–1049.
Pennell, K. D., Costanza, J., and Wang, Y. (2008). “Transport and retention of nanomaterials in porous media.” Nanoscience and nanotechnology: Environmental and health impacts, V. H. Grassian, ed., Wiley, New York, 91–106.
Peralta-Videa, J. R., Zhao, L., Lopez-Moreno, M. L., de la Rosa, G., Hong, J., and Gardea-Torresdey, J. L. (2011). “Nanomaterials and the environment: A review for the biennium 2008–2010.” J. Hazard. Mater., 186(1), 1–15.
Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., and Lowry, G. V. (2009). “Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns.” Environ. Sci. Technol., 43(13), 5079–5085.
Pipan-Tkalec, Ž., Drobne, D., Jemec, A., Romih, T., Zidar, P., and Bele, M. (2010). “Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution.” Toxicology, 269(2–3), 198–203.
Plant, J. A., Voulvoulis, N., and Ragnarsdottir, K. V. (2012). “Pollutants, human health and the environment–A risk based approach.” Applied geochemistry, Wiley, Hoboken, NJ, 1–360.
Priester, J. H., et al. (2012). “Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption.” Proc. Natl. Acad. Sci. , 109(37), E2451–E2456.
Rahman, T., George, J., and Shipley, H. J. (2013). “Transport of aluminum oxide nanoparticles in saturated sand: Effects of ionic strength, flow rate, and nanoparticle concentration.” Sci. Total Environ., 463–464, 565–571.
Rao, M. A., Scelza, R., Acevedo, F., Diez, M. C., and Gianfreda, L. (2014a). “Enzymes as useful tools for environmental purposes.” Chemosphere, 107, 145–162.
Rao, M. A., Scelza, R., and Gianfreda, L. (2014b). “Soil enzymes.” Enzymes in agricultural sciences, L. Gianfreda and M. A. Rao, eds., OMICS Group, Foster City, CA, 1–18.
Roh, J.-Y., Park, Y.-K., Park, K., and Choi, J. (2010). “Ecotoxicological investigation of CeO2 and TiO2 nanoparticles on the soil nematode Caenorhabditis elegans using gene expression, growth, fertility, and survival as endpoints.” Environ. Toxicol. Chem. Pharmacol., 29(2), 167–172.
Sagee, O., Dror, I., and Berkowitz, B. (2012). “Transport of silver nanoparticles (AgNPs) in soil.” Chemosphere, 88(5), 670–675.
Schlich, K., Terytze, K., and Hund-Rinke, K. (2012). “Effect of TiO2 nanoparticles in the earthworm reproduction test.” Environ. Sci. Eur., 24(1), 1–10.
Scott-Fordsmand, J. J., Krogh, P. H., Schaefer, M., and Johansen, A. (2008). “The toxicity testing of double-walled nanotubes-contaminated food to Eisenia veneta earthworms.” Ecotoxicol. Environ. Saf., 71(3), 616–619.
Shah, V., and Belozerova, I. (2008). “Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds.” Water Air Soil Pollut., 197(1–4), 143–148.
Shin, Y.-J., Kwak, J. I, and An, Y.-J. (2012). “Evidence for the inhibitory effects of silver nanoparticles on the activities of soil exoenzymes.” Chemosphere, 88(4), 524–529.
Shipley, H. J., Engates, K. E., and Guettner, A. M. (2010). “Study of iron oxide nanoparticles in soil for remediation of arsenic.” J. Nanopart. Res., 13(6), 2387–2397.
Shoults-Wilson, W. A., Reinsch, B. C., Tsyusko, O. V, Bertsch, P. M., Lowry, G. V, and Unrine, J. M. (2011a). “Role of particle size and soil type in toxicity of silver nanoparticles to earthworms.” Soil Sci. Soc. Am. J., 75(2), 365–377.
Shoults-Wilson, W. A., Zhurbich, O. I., McNear, D. H., Tsyusko, O. V, Bertsch, P. M., and Unrine, J. M. (2011b). “Evidence for avoidance of Ag nanoparticles by earthworms (Eisenia fetida).” Ecotoxicology, 20(2), 385–396.
Shrestha, B., Acosta-Martinez, V., Cox, S. B., Green, M. J., Li, S., and Cañas-Carrell, J. E. (2013). “An evaluation of the impact of multiwalled carbon nanotubes on soil microbial community structure and functioning.” J. Hazard. Mater., 261, 188–197.
Simonet, B. M., and Valcárcel, M. (2009). “Monitoring nanoparticles in the environment.” Anal. Boanal. Chem., 393(1), 17–21.
Stampoulis, D., Sinha, S. K., and White, J. C. (2009). “Assay-dependent phytotoxicity of nanoparticles to plants.” Environ. Sci. Technol., 43(24), 9473–9479.
Staunton, S. (2002). “Direct and indirect effects of organic matter on metal immobilisation in soil.” Dev. Soil Sci., 28, 79–97.
Sudheer Khan, S., Bharath Kumar, E., Mukherjee, A., and Chandrasekaran, N. (2011). “Bacterial tolerance to silver nanoparticles (SNPs): Aeromonas punctata isolated from sewage environment.” J. Basic Microbiol., 51(2), 183–190.
Suppan, S. (2013). “Nanomaterials in soil: Our future food chain?.” Institute for Agriculture and Trade Policy (IATP), Minneapolis.
Tkalec, Ž. P., et al. (2011). “Micro-PIXE study of Ag in digestive glands of a nano-Ag fed arthropod (Porcellio scaber, Isopoda, Crustacea).” Nucl. Instrum. Methods Phys. Res., Sect. B, 269(20), 2286–2291.
Tong, M., Ding, J., Shen, Y., and Zhu, P. (2010). “Influence of biofilm on the transport of fullerene (C60) nanoparticles in porous media.” Water Res., 44(4), 1094–1103.
Tong, Z., Bischoff, M., Nies, L., Applegate, B., and Turco, R. F. (2007). “Impact of fullerene (C60) on a soil microbial community.” Environ. Sci. Technol., 41(8), 2985–2991.
Tourinho, P. S., et al. (2012). “Metal-based nanoparticles in soil: Fate, behavior, and effects on soil invertebrates.” Environ. Toxicol. Chem., 31(8), 1679–1692.
Tripathi, S., Champagne, D., and Tufenkji, N. (2012). “Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm.” Environ. Sci. Technol., 46(13), 6942–6949.
Tungittiplakorn, W., Lion, L. W., Cohen, C., and Kim, J.-Y. (2004). “Engineered polymeric Nanoparticles for soil remediation.” Environ. Sci. Technol., 38(5), 1605–1610.
Unrine, J. M., Hunyadi, S. E., Tsyusko, O. V, Rao, W., Shoults-Wilson, W. A., and Bertsch, P. M. (2010a). “Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida).” Environ. Sci. Technol., 44(21), 8308–8313.
Unrine, J. M., Tsyusko, O. V., Hunyadi, S. E., Judy, J. D., and Bertsch, P. M. (2010b). “Effects of particle size on chemical speciation and bioavailability of copper to earthworms exposed to copper nanoparticles.” J. Environ. Qual., 39(6), 1942–1953.
Van Calster, G. (2006). “Regulating nanotechnology in the European Union.” Nanotechnol. Law Bus., 3, 359–372.
Vittori Antisari, L., Carbone, S., Gatti, A., Vianello, G., and Nannipieri, P. (2013). “Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil.” Soil Biol. Biochem., 60, 87–94.
Waalewijn-Kool, P. L., Ortiz, M. D., Lofts, S., and van Gestel, C. A. M. (2013). “The effect of pH on the toxicity of zinc oxide nanoparticles to Folsomia candida in amended field soil.” Environ. Toxicol. Chem., 32(10), 2349–2355.
Wang, C., et al. (2012). “Retention and transport of silica nanoparticles in saturated porous media: Effect of concentration and particle size.” Environ. Sci. Technol., 46(13), 7151–7158.
Wang, D., Chu, L., Paradelo, M., Peijnenburg, W. J. G. M., Wang, Y., and Zhou, D. (2011a). “Transport behavior of humic acid-modified nano-hydroxyapatite in saturated packed column: Effects of Cu, ionic strength, and ionic composition.” J. Colloid Interface Sci., 360(2), 398–407.
Wang, H., Wick, R. L., and Xing, B. (2009). “Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans.” Environ. Pollut., 157(4), 1171–1177.
Wang, S., Kurepa, J., and Smalle, J. A. (2011b). “Ultra-small TiO2 nanoparticles disrupt microtubular networks in Arabidopsis thaliana.” Plant Cell Environ., 34(5), 811–820.
Wang, Y., Li, Y., Kim, H., Walker, S. L., Abriola, L. M., and Pennell, K. D. (2010). “Transport and retention of fullerene nanoparticles in natural soils.” J. Environ. Qual., 39(6), 1925–1933.
Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setälä, H., van der Putten, W. H., and Wall, D. H. (2004). “Ecological linkages between aboveground and belowground biota.” Science, 304(5677), 1629–1633.
Wijnhoven, S. W. P., et al. (2009). “Nano-silver—A review of available data and knowledge gaps in human and environmental risk assessment.” Nanotoxicology, 3(2), 109–138.
Wu, C., Spongberg, A. L., Witter, J. D., Fang, M., and Czajkowski, K. P. (2010). “Uptake of pharmaceutical and personal care products by soybean plants from soils applied with biosolids and irrigated with contaminated water.” Environ. Sci. Technol., 44(16), 6157–6161.
Wu, Q., et al. (2012a). “Small sizes of TiO2-NPs exhibit adverse effects at predicted environmental relevant concentrations on nematodes in a modified chronic toxicity assay system.” J. Hazard. Mater., 243, 161–168.
Wu, Q., et al. (2013). “Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans.” Chemosphere, 90(3), 1123–1131.
Wu, Q., Li, Y., Tang, M., and Wang, D. (2012b). “Evaluation of environmental safety concentrations of DMSA coated Fe2O3-NPs using different assay systems in nematode Caenorhabditis elegans.” PLoS ONE, 7(8), e43729.
Yan, L., Zhao, F., Li, S., Hu, Z., and Zhao, Y. (2011). “Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes.” Nanoscale, 3(2), 362–382.
Yang, K., Lin, D., and Xing, B. (2009). “Interactions of humic acid with nanosized inorganic oxides.” Langmuir, 25(6), 3571–3576.
Yang, L., and Watts, D. J. (2005). “Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles.” Toxicol. Lett., 158(2), 122–132.
Yang, X., et al. (2012). “Mechanism of silver nanoparticle toxicity is dependent on dissolved silver and surface coating in Caenorhabditis elegans.” Environ. Sci. Technol., 46(2), 1119–1127.
Yang, Y., et al. (2014). “Metal and nanoparticle occurrence in biosolid-amended soils.” Sci. Total Environ., 485–486, 441–449.
Zhang, L., Petersen, E. J., Habteselassie, M. Y., Mao, L., and Huang, Q. (2013). “Degradation of multiwall carbon nanotubes by bacteria.” Environ. Pollut., 181, 335–339.
Zhang, W. (2003). “Nanoscale iron particles for environmental remediation: An overview.” J. Nanopart. Res., 5(3–4), 323–332.
Zhang, W., et al. (2010). “Colloid transport and retention in unsaturated porous media: Effect of colloid input concentration.” Environ. Sci. Technol., 44(13), 4965–4972.

Information & Authors

Information

Published In

Go to Journal of Hazardous, Toxic, and Radioactive Waste
Journal of Hazardous, Toxic, and Radioactive Waste
Volume 20Issue 1January 2016

History

Received: Jul 11, 2014
Accepted: Nov 5, 2014
Published online: Jan 8, 2015
Discussion open until: Jun 8, 2015
Published in print: Jan 1, 2016

Permissions

Request permissions for this article.

Authors

Affiliations

Ana de Santiago-Martín, Ph.D. [email protected]
Dept. de Génie Civil et Génie des Eaux, Faculté de Sciences et de Génie, Univ. Laval, Pavillon Adrien-Pouliot, 1065 Ave. de la Médecine, QC, Canada G1V 0A6 (corresponding author). E-mail: [email protected]; [email protected]
Boris Constantin
Dept. de Génie Civil et Génie des Eaux, Faculté de Sciences et de Génie, Univ. Laval, Pavillon Adrien-Pouliot, 1065 Ave. de la Médecine, QC, Canada G1V 0A6.
Gaëlle Guesdon
Dept. de Génie Civil et Génie des Eaux, Faculté de Sciences et de Génie, Univ. Laval, Pavillon Adrien-Pouliot, 1065 Ave. de la Médecine, QC, Canada G1V 0A6.
Nicolas Kagambega
Dept. de Génie Civil et Génie des Eaux, Faculté de Sciences et de Génie, Univ. Laval, Pavillon Adrien-Pouliot, 1065 Ave. de la Médecine, QC, Canada G1V 0A6.
Sébastien Raymond, Ph.D.
Dept. de Génie Civil et Génie des Eaux, Faculté de Sciences et de Génie, Univ. Laval, Pavillon Adrien-Pouliot, 1065 Ave. de la Médecine, QC, Canada G1V 0A6.
Rosa Galvez Cloutier
Professor, Dept. de Génie Civil et Génie des Eaux, Faculté de Sciences et de Génie, Univ. Laval, Pavillon Adrien-Pouliot, 1065 Ave. de la Médecine, QC, Canada G1V 0A6.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share