Abstract

This article aims to provide a comprehensive appraisal on the current status of three-dimensional (3D) numerical modeling of local scour around instream hydraulic structures. Many computer models have been developed or are in development to simulate riverbed morphology. Local scour, however, is a special category that requires in general a 3D model based on some averaged/filtered form of the Navier-Stokes (NS) equations and a 3D sediment transport model. Only limited number of 3D scour codes are available for practical usage; there is also a lack of literature on the limitations of the models in capturing the scour-producing flow and the sediment transport solvers embedded within. For 3D local scour modeling, the main intrinsic uncertainty lies primarily in the sediment part. In this article, the basic theory and the state of the art of current 3D local scour models are reviewed, focusing primarily on the sediment solver, and future research needs are discussed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

References

Afzal, M. S., H. Bihs, A. Kamath, and Ø. A. Arntsen. 2015. “Three-dimensional numerical modeling of pier scour under current and waves using level-set method.” J. Offshore Mech. Arct. Eng. 137 (3): 032001. https://doi.org/10.1115/1.4029999.
Akib, S., M. Mohammadhassani, and A. Jahangirzadeh. 2014. “Application of ANFIS and LR in prediction of scour depth in bridges.” Comput. Fluids 91 (18): 77–86. https://doi.org/10.1016/j.compfluid.2013.12.004.
Ariathurai, R., and K. Arulanandan. 1978. “Erosion rates of cohesive soils.” J. Hydraul. Div. 104 (2): 279–283. https://doi.org/10.1061/JYCEAJ.0004937.
Ayoubloo, M. K., A. Etemad-Shahidi, and J. Mahjoobi. 2010. “Evaluation of regular wave scour around a circular pile using data mining approaches.” Appl. Ocean Res. 32 (1): 34–39. https://doi.org/10.1016/j.apor.2010.05.003.
Azamathulla, H. M., A. A. Ghani, N. A. Zakaria, and A. Guven. 2010. “Genetic programming to predict bridge pier scour.” J. Hydraul. Eng. 136 (3): 165–169. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000133.
Azimi, A. H., S. Shabanlou, F. Yosefvand, A. Rajabi, and B. Yaghoubi. 2020. “Estimation of scour depth around cross-vane structures using a novel non-tuned high-accuracy machine learning approach.” Sādhanā 45 (1): 1–10. https://doi.org/10.1007/s12046-020-01390-6.
Bateni, S. M., S. M. Borghei, and D. S. Jeng. 2007. “Neural network and neuro-fuzzy assessments for scour depth around bridge piers.” Eng. Appl. Artif. Intell. 20 (3): 401–414. https://doi.org/10.1016/j.engappai.2006.06.012.
Baykal, C., B. M. Sumer, D. R. Fuhrman, N. G. Jacobsen, and J. Fredsøe. 2015. “Numerical investigation of flow and scour around a vertical circular cylinder.” Philos. Trans. R. Soc. London, Ser. A 373 (4): 20140104. https://doi.org/10.1098/rsta.2014.0104.
Baykal, C., B. M. Sumer, D. R. Fuhrman, N. G. Jacobsen, and J. Fredsøe. 2017. “Numerical simulation of scour and backfilling processes around a circular pile in waves.” Coastal Eng. 122 (Jan): 87–107. https://doi.org/10.1016/j.coastaleng.2017.01.004.
Bombardelli, F. A. 2020. “Seeing is believing: Using hybrid turbulence closures to uncover the features of flows past hydraulic structures.” In Proc., Int. Symp. Hydraulic Structures. Beijing: International Association for Hydro-Environment Engineering and Research. https://doi.org/10.14264/uql.2020.514.
Bombardelli, F. A., and S. K. Jha. 2009. “Hierarchical modeling of the dilute transport of suspended sediment in open channels.” Environ. Fluid Mech. 9 (6): 207–235. https://doi.org/10.1007/s10652-008-9091-6.
Bombardelli, F. A., and P. A. Moreno. 2012. “Exchanges at the bed sediments–water column interface.” In Fluid mechanics of environmental. 2nd ed., 221–253. Boca Raton, FL: CRC Press.
Chen, D., K. Acharya, and M. Stone. 2010. “Sensitivity analysis of nonequilibrium adaptation parameters for modeling mining-pit migration.” J. Hydraul. Eng. 136 (10): 806–811. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000242.
Cheng, Z., M. Koken, and G. Constantinescu. 2018. “Approximate methodology to account for effects of coherent structures on sediment entrainment in RANS simulations with a movable bed and applications to pier scour.” Adv. Water Resour. 120 (5): 65–82. https://doi.org/10.1016/j.advwatres.2017.05.019.
Dey, S. 2003. “Threshold of sediment motion on combined transverse and longitudinal sloping beds.” J. Hydraul. Res. 41 (4): 405–415. https://doi.org/10.1080/00221680309499985.
Ehteram, M., A. N. Ahmed, L. Ling, C. M. Fai, S. D. Latif, and H. A. Afan. 2020. “Pipeline scour rates prediction-based model utilizing a multilayer perceptron-colliding body algorithm.” Water 12 (3): 902. https://doi.org/10.3390/w12030902.
Elghannay, H., and D. K. Tafti. 2017. “LES-DEM simulations of sediment transport.” Int. J. Sediment Res. 33 (2): 137–148. https://doi.org/10.1016/j.ijsrc.2017.09.006.
Engelund, F., and J. Fredsoe. 1976. “A sediment transport model for straight alluvial channels.” Nord. Hydrol. 7 (12): 293–306. https://doi.org/10.2166/nh.1976.0019.
Escauriaza, C., and F. Sotiropoulos. 2011. “Lagrangian model of bed-load transport in turbulent junction flows.” J. Fluid Mech. 666 (12): 36–76. https://doi.org/10.1017/S0022112010004192.
Ettema, R., G. Constantinescu, and B. W. Melville. 2017. “Flow-field complexity and design estimation of pier-scour depth: Sixty years since Laursen and Toch.” J. Hydraul. Eng. 143 (9): 03117006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001330.
Ettema, R., G. Costantinescu, and B. W. Melville. 2011. Evaluation of bridge scour research: Pier scour processes and predictions. Washington, DC: Transportation Research Board.
Exner, F. M. 1925. “Uber die wechselwirkung zwischen wasser und geschiebe in flussen.” Akad. Wiss. Wien Math. Naturwiss. Klasse 134 (2): 165–204.
Fael, C., R. Lança, and A. Cardoso. 2016. “Effect of pier shape and pier alignment on the equilibrium scour depth at single piers.” Int. J. Sediment Res. 31 (3): 244–250. https://doi.org/10.1016/j.ijsrc.2016.04.001.
Ferziger, J. H., and M. Peric. 2002. Computational methods for fluid dynamics. 3rd ed. Berlin: Springer.
Forghani, M., Y. Qian, J. Lee, M. W. Farthing, T. Hesser, P. K. Kitanidis, and E. F. Darve. 2021. “Application of deep learning to large scale riverine flow velocity estimation.” Stochastic Environ. Res. Risk Assess. 35 (May): 1069–1088. https://doi.org/10.1007/s00477-021-01988-0.
Franca, M. J., D. Valero, and X. Liu. 2021. “Turbulence and rivers.” In Treatise in geomorphology. 2nd ed. New York: Elsevier.
Fredsoe, J., and B. M. Sumer. 2002. “The mechanics of scour in the marine.” In Environment. Washington, DC: World Scientific.
Gaeuman, D., L. Sklar, and Y. G. Lai. 2014. “Flume experiments to constrain bedload adaptation length.” J. Hydrol. Eng. 20 (5): 1–5. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001067.
Garcia, M. H. 2008. Sedimentation engineering: Processes, measurements, modeling, and practice. Reston, VA: ASCE.
Ge, L., and F. Sotiropoulos. 2005. “3D unsteady RANS modeling of complex hydraulic engineering flows. Part I: Numerical model.” J. Hydraul. Eng. 31 (9): 800–808. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:9(800).
Ghazanfari-Hashemi, S., A. Etemad-Shahidi, M. H. Kazeminezhad, and A. R. Mansoori. 2011. “Prediction of pile group scour in waves using support vector machines and ANN.” J. Hydroinf. 13 (4): 609–620. https://doi.org/10.2166/hydro.2010.107.
Glock, K., M. Tritthart, H. Habersack, and C. Hauer. 2019. “Comparison of hydrodynamics simulated by 1D, 2D and 3D models focusing on bed shear stresses.” Water 11 (2): 226. https://doi.org/10.3390/w11020226.
Greimann, B. P., Y. G. Lai, and J. C. Huang. 2008. “Two-dimensional total sediment load model equations.” J. Hydraul. Eng. 134 (8): 1142–1146. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:8(1142).
Guven, A., and M. Gunal. 2008. “Genetic programming approach for prediction of local scour downstream of hydraulic structures.” J. Irrig. Drain. Eng. 134 (2): 241–249. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:2(241).
Hong, J. H., M. K. Goyal, Y. M. Chiew, and L. H. Chua. 2012. “Predicting time-dependent pier scour depth with support vector regression.” J. Hydrol. 468 (Aug): 241–248. https://doi.org/10.1016/j.jhydrol.2012.08.038.
Ismail, H., Y. Xu, and X. Liu. 2021. “Flow and scour around idealized porous engineered log jam structures.” J. Hydraul. Eng. 147 (1): 04020089. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001833.
Jia, Y., M. Altinakar, and M. S. Guney. 2017. “Three-dimensional numerical simulations of local scouring around bridge piers.” J. Hydraul. Res. 56 (3): 351–366. https://doi.org/10.1080/00221686.2017.1356389.
Julien, P. Y. 2010. Erosion and sedimentation. 2nd ed. Cambridge, MA: Cambridge University Press.
Kambekar, A. R., and M. C. Deo. 2003. “Estimation of pile group scour using neural networks.” Appl. Ocean Res. 25 (4): 225–234. https://doi.org/10.1016/j.apor.2003.06.001.
Kaya, A. 2010. “Artificial neural network study of observed pattern of scour depth around bridge piers.” Comput. Geotech. 37 (3): 413–418. https://doi.org/10.1016/j.compgeo.2009.10.003.
Khosravi, K., Z. S. Khozani, and L. Mao. 2021. “A comparison between advanced hybrid machine learning algorithms and empirical equations applied to abutment scour depth prediction.” J. Hydrol. 596 (21): 126100. https://doi.org/10.1016/j.jhydrol.2021.126100.
Khosronejad, A., K. Flora, and S. Kang. 2020. “Effect of inlet turbulent boundary conditions on scour predictions of coupled LES and morphodynamics in a field-scale river: Bankfull flow conditions.” J. Hydraul. Eng. 146 (4): 04020020. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001719.
Khosronejad, A., S. Kang, I. Borazjani, and F. Sotiropoulos. 2011. “Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport p\phenomena.” Adv. Water Resour. 34 (7): 829–843. https://doi.org/10.1016/j.advwatres.2011.02.017.
Khosronejad, A., S. Kang, and F. Sotiropoulos. 2012. “Experimental and computational investigation of local scour around bridge piers.” Adv. Water Resour. 37 (Sep): 73–85. https://doi.org/10.1016/j.advwatres.2011.09.013.
Kim, H., H. C. Chen, and J. L. Briaud. 2022. “Numerical simulation of scour hole backfilling in unidirectional flow.” J. Hydraul. Eng. 148 (7): 04022013. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001982.
Kirkil, G., and G. Constantinescu. 2010. “Flow and turbulence structure around an instream rectangular cylinder with scour hole.” Water Resour. Res. 46 (11). https://doi.org/10.1029/2010WR009336.
Kirkil, G., and G. Constantinescu. 2015. “Effects of cylinder Reynolds number on the turbulent horseshoe vortex system and near wake of a surface-mounted circular cylinder.” Phys. Fluids 27 (7): 075102. https://doi.org/10.1063/1.4923063.
Kitsikoudis, V., E. Sidiropoulos, and V. Hrissanthou. 2013. Derivation of sediment transport models for Sand Bed rivers from data-driven techniques. Rijeka, Croatia: In Tech.
Kloss, C., C. Goniva, A. Hager, S. Amberger, and S. Pirker. 2012. “Models, algorithms and validation for opensource DEM and CFD-DEM.” Prog. Comput. Fluid Dyn. 12 (2): 140–152. https://doi.org/10.1504/PCFD.2012.047457.
Koutitas, C. G., and P. D. Scarlatos. 2016. Computational modelling in hydraulic and coastal engineering. London: CRC Press.
Kovacs, A., and G. Parker. 1994. “A new vectorial bedload formulation and its application to the time evolution of straight river channels.” J. Fluid Mech. 267 (Oct): 153–183. https://doi.org/10.1017/S002211209400114X.
Kraft, S., Y. Wang, and M. Oberlack. 2011. “Large eddy simulation of sediment deformation in a turbulent flow by means of level-set method.” J. Hydraul. Eng. 137 (11): 1394–1405. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000439.
Lai, Y. G. 2020. “A two-dimensional depth-averaged sediment transport mobile-bed model with polygonal meshes.” Water 12 (Oct): 1032. https://doi.org/10.3390/w12041032.
Lai, Y. G. 2021. Coastal modeling: Sediment transport module. Denver: Bureau of Reclamation.
Lai, Y. G., X. Liu, F. A. Bombardelli, and Y. Song. 2022. Numerical modeling of scour, in scour at in-stream hydraulic structures. Reston, VA: ASCE.
Lai, Y. G., L. J. Weber, and V. C. Patel. 2003. “Nonhydrostatic three-dimensional method for hydraulic flow simulation. I: Formulation and verification.” J. Hydraul. Eng. 129 (3): 196–205. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:3(196).
Lai, Y. G., and K. Wu. 2018. “Bridge scour simulation with a new 3D flow and sediment transport model.” In Proc., 9th Int. Conf. on Scour and Erosion. Oxfordshire, UK: Taylor and Francis.
Lai, Y. G., and K. Wu. 2019. “A three-dimensional flow and sediment transport model for free-surface open channel flows on unstructured flexible meshes.” Fluids 4 (1): 18. https://doi.org/10.3390/fluids4010018.
Lee, T. L., D. S. Jeng, G. H. Zhang, and J. H. Hong. 2007. “Neural network modeling for estimation of scour depth around bridge piers.” J. Hydrodyn. 19 (3): 378–386. https://doi.org/10.1016/S1001-6058(07)60073-0.
LeVeque, R. J. 2002. Finite volume methods for hyperbolic problems. Cambridge, MA: Cambridge University Press.
Ling, J., and J. Templeton. 2015. “Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty.” Phys. Fluids 27 (8): 085103. https://doi.org/10.1063/1.4927765.
Liu, D., X. Liu, and X. Fu. 2018. “LES-DEM simulations of sediment saltation in a rough-wall turbulent boundary layer.” J. Hydraul. Res. 57 (6): 786–797. https://doi.org/10.1080/00221686.2018.1509384.
Liu, D., X. Liu, X. Fu, and G. Wang. 2016. “Quantification of the bedload effects on turbulent open channel flows.” J. Geophys. Res. Earth Surf. 121 (4): 767–789. https://doi.org/10.1002/2015JF003723.
Liu, X. 2014. “New near-wall treatment for suspended sediment transport simulations with high-Reynolds number (HRN) turbulence models.” J. Hydraul. Eng. 140 (3): 333–339. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000824.
Liu, X. 2018. “Simulations of suspended sediment transport using low-Reynolds number (LRN) turbulence models with a unified mesh.” J. Hydraul. Eng. 144 (6): 04018029. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001462.
Liu, X., and M. Garcia. 2008. “Three-dimensional numerical model with free water surface and mesh deformation for local sediment scour.” J. Waterw. Port Coastal Ocean Eng. 134 (4): 203–217. https://doi.org/10.1061/(ASCE)0733-950X(2008)134:4(203).
Ma, H., et al. 2020. “Universal relation with regime transition for sediment transport in fine-grained rivers.” PNAS 117 (1): 171–176. https://doi.org/10.1073/pnas.1911225116.
Man, C., and C. W. Tsai. 2007. “Stochastic partial differential equation-based model for suspended sediment transport in surface water flows.” J. Eng. Mech. 133 (4): 422. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:4(422).
Melville, B. W., and S. E. Coleman. 2000. Bridge scour. Washington, DC: Water Resources Publication.
Meyer-Peter, E., and R. Muller. 1948. “Formulas for bed-load transport.” In Proc., 2nd Meeting, 39–64. Stockholm, Sweden: International Association of Hydraulic Research.
Mir, B. H., M. A. Lone, and N. A. Rather. 2019. “Significance of shape factor of obstacle on local scour.” Iran. J. Sci. Technol. Trans. Civ. Eng. 43 (1): 323–330. https://doi.org/10.1007/s40996-018-0167-3.
Nagel, T., J. Chauchat, C. Bonamy, X. Liu, Z. Cheng, and T. Hsu. 2020. “Three-dimensional scour simulations with a two-phase flow model.” Adv. Water Resour. 138 (14): 103544. https://doi.org/10.1016/j.advwatres.2020.103544.
Najafzadeh, M., A. Etemad-Shahidi, and S. Y. Lim. 2016. “Scour prediction in long contractions using ANFIS and SVM.” Ocean Eng. 111 (2): 128–135. https://doi.org/10.1016/j.oceaneng.2015.10.053.
Najafzadeh, M., and G. Oliveto. 2021. “Exploring 3D wave-induced scouring patterns around subsea pipelines with artificial intelligence techniques.” Appl. Sci. 11 (9): 3792. https://doi.org/10.3390/app11093792.
Najafzadeh, M., and F. Saberi-Movahed. 2019. “GMDH-GEP to predict free span expansion rates below pipelines under waves.” Mar. Georesour. Geotechnol. 37 (3): 375–392. https://doi.org/10.1080/1064119X.2018.1443355.
Okayasu, A., K. Fujii, and M. Isobe. 2011. “Effect of external turbulence on sediment pickup rate.” Coastal Eng. Proc. 1 (32): 14. https://doi.org/10.9753/icce.v32.sediment.14.
Olsen, N., and H. M. Kjellesvig. 1998. “Three dimensional numerical flow modeling for estimation of maximum local scour depth.” J. Hydraul. Res. 36 (4): 579. https://doi.org/10.1080/00221689809498610.
Olsen, N., and C. Melaaen. 1993. “Three-dimensional calculation of scour around cylinders.” J. Hydraul. Eng. 119 (9): 1048–1054. https://doi.org/10.1061/(ASCE)0733-9429(1993)119:9(1048).
Ota, K., T. Sato, H. Nakagawa, and K. Kawaike. 2017. “Three-dimensional simulation of local scour around a weir-type structure: Hybrid Euler-Lagrange model for bed-material load.” J. Hydraul. Eng. 143 (4): 04016096. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001263.
Paik, J., L. Ge, and F. Sotiropoulos. 2004. “Toward the simulation of complex 3D shear flows using unsteady statistical turbulence models.” Int. J. Heat Fluid Flow 25 (3): 513–527. https://doi.org/10.1016/j.ijheatfluidflow.2004.02.002.
Pal, M., N. K. Singh, and N. K. Tiwari. 2012. “M5 model tree for pier scour prediction using field dataset.” KSCE J. Civ. Eng. 16 (6): 1079–1084. https://doi.org/10.1007/s12205-012-1472-1.
Parker, G. 1990. “Surface-based bedload transport relation for gravel rivers.” J. Hydraul. Res. 28 (4): 417–436. https://doi.org/10.1080/00221689009499058.
Pope, S. B. 2000. Turbulent flows. Cambridge, MA: Cambridge University Press.
Pourzangbar, A., M. Brocchini, A. Saber, J. Mahjoobi, M. Mirzaaghasi, and M. Barzegar. 2017. “Prediction of scour depth at breakwaters due to non-breaking waves using machine learning approaches.” Appl. Ocean Res. 63 (Feb): 120–128. https://doi.org/10.1016/j.apor.2017.01.012.
Quezada, M., A. Tamburrino, and Y. Niño. 2018. “Numerical simulation of scour around circular piles due to unsteady currents and oscillatory flows.” Eng. Appl. Comput. Fluid Mech. 12 (1): 354–374. https://doi.org/10.1080/19942060.2018.1438924.
Raissi, M., and G. E. Karniadakis. 2018. “Hidden physics models: Machine learning of nonlinear partial differential equations.” J. Comput. Phys. 357 (Jan): 125–141. https://doi.org/10.1016/j.jcp.2017.11.039.
Randle, T. J. 2020. “Use of multidimensional models to investigate boundary shear stress through meandering river channels.” Water 12 (12): 3506. https://doi.org/10.3390/w12123506.
Rashki Ghaleh Nou, M., M. Azhdary Moghaddam, M. Shafai Bajestan, and H. M. Azamathulla. 2019. “Estimation of scour depth around submerged weirs using self-adaptive extreme learning machine.” J. Hydroinf. 21 (6): 1082–1101. https://doi.org/10.2166/hydro.2019.070.
Rodi, W. 2017. “Turbulence modeling and simulation in hydraulics: A historical review.” J. Hydraul. Eng. 143 (5): 03117001. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001288.
Roseberry, J. C., M. W. Schmeeckle, and D. J. Furbish. 2012. “A probabilistic description of the bedload sediment flux: 2. Particle activity and motions.” J. Geophys. Res. 117 (44): F03032. https://doi.org/10.1029/2012JF002353.
Roulund, A., B. M. Sumer, J. Fredsoe, and J. Michelsen. 2005. “Numerical and experimental investigation of flow and scour around a circular pile.” J. Fluid Mech. 534 (4): 351–401. https://doi.org/10.1017/S0022112005004507.
Sagaut, P., S. Deck, and M. Terracol. 2013. Multiscale and multiresolution approaches in turbulence. Washington, DC: Imperial College Press.
Sanchez, A., W. Wu, and T. M. Beck. 2016. “A depth-averaged 2-D model of flow and sediment transport in coastal water.” Ocean Dyn. 66 (1): 1475–1495. https://doi.org/10.1007/s10236-016-0994-3.
Schmeeckle, M. W. 2014. “Numerical simulation of turbulence and sediment transport of medium sand.” J. Geophys. Res. Earth Surf. 119 (6): 1240–1262. https://doi.org/10.1002/2013JF002911.
Seminara, G., L. Solari, and G. Parker. 2002. “Bed load at low shields stress on arbitrarily sloping beds: Failure of the Bagnold hypothesis.” Water Resour. Res. 38 (31): 1–16. https://doi.org/10.1029/2001WR000681.
Slotnick, J. P., A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. J. Mavriplis. 2014. CFD Vision 2030 study: A path to revolutionary computational aerosciences. Washington, DC: National Aeronautics and Space Administration.
Song, Y., Y. Xu, H. Ismail, and X. Liu. 2021. “Scour modeling based on immersed boundary method: A pathway to practical use of three-dimensional scour models.” Coastal Eng. 171 (Jan): 104037. https://doi.org/10.1016/j.coastaleng.2021.104037.
Song, Y., Y. Xu, and X. Liu. 2020. “Physically based sand slide method in scour models based on slope-limited diffusion.” J. Hydraul. Eng. 146 (11): 04020074. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001814.
Soulsby, R. L. 1997. Dynamics of marine sands, 107–119. London: Thomas Telford.
Struiksma, N., K. W. Olewensen, C. Flokstra, and H. J. de Vriend. 1985. “Bed deformation in curved alluvial channels.” J. Hydraul. Res. 23 (1): 57–79. https://doi.org/10.1080/00221688509499377.
Sumer, B. M., L. Chua, N. Cheng, and J. Fredsøe. 2003. “Influence of turbulence on bed load sediment transport.” J. Hydraul. Eng. 8 (585): 585–596. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:8(585).
Sumer, B. M., and R. Deigaard. 1981. “Particle motions near the bottom in turbulent flow in an open channel. Part 2.” J. Fluid Mech. 109 (Feb): 311–337. https://doi.org/10.1017/S0022112081001092.
Sun, R., and H. Xiao. 2016. “SediFoam: A general-purpose, open-source CFD-DEM solver for particle-laden flow with emphasis on sediment transport.” Comput. Geosci. 89 (Jan): 207–219. https://doi.org/10.1016/j.cageo.2016.01.011.
Sutherland, A. J. 1967. “Proposed mechanism for sediment entrainment by turbulent flows.” J. Geophys. Res. 72 (24): 6183–6194. https://doi.org/10.1029/JZ072i024p06183.
Tao, H., M. Habib, I. Aljarah, H. Faris, H. A. Afan, and Z. M. Yaseen. 2021. “An intelligent evolutionary extreme gradient boosting algorithm development for modeling scour depths under submerged weir.” Inf. Sci. 570 (Apr): 172–184. https://doi.org/10.1016/j.ins.2021.04.063.
Török, G. T., S. Baranya, and N. Rüther. 2017. “3D CFD modeling of local scouring, bed armoring and sediment deposition.” Water 9 (10): 56. https://doi.org/10.3390/w9010056.
Tsai, C. W., S. Y. Hung, and T. H. Wu. 2020. “Stochastic sediment transport: Anomalous diffusions and random movement.” Stochastic Environ. Res. Risk Assess. 34 (20): 397–413. https://doi.org/10.1007/s00477-020-01775-3.
Unger, J., and W. H. Hager. 2007. “Down-flow and horseshoe vortex characteristics of sediment embedded bridge piers.” Exp. Fluids 42 (1): 1–19. https://doi.org/10.1007/s00348-006-0209-7.
van Rijn, L. C. 1984a. “Sediment transport, Part I: Bed load transport.” J. Hydraul. Eng. 110 (10): 1431–1456. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431).
van Rijn, L. C. 1984b. “Sediment transport, Part II: Suspended load transport.” J. Hydraul. Eng. 110 (11): 1613–1641. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613).
van Rijn, L. C. 1989. Handbook, sediment transport by currents and waves. Delft, Netherlands: Delft Hydraulics.
van Rijn, L. C. 1993. Principles of sediment transport in rivers, estuaries, and coastal seas. Amsterdam, Netherlands: Aqua Publications.
van Rijn, L. C. 2007. “Unified view of sediment transport by currents and waves, I: Initiation of bed motion, bed roughness, and bed-load transport.” J. Hydraul. Eng. 133 (6): 649–667. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:6(649).
Versteeg, H. K., and W. Malalasekera. 2007. An introduction to computational fluid dynamics: The finite volume method. 2nd ed. Washington, DC: Prentice Hall.
Vijayasree, B. A., T. I. Eldho, B. S. Mazumder, and N. Ahmad. 2019. “Influence of bridge pier shape on flow field and scour geometry.” Int. J. River Basin Manage. 17 (1): 109–129. https://doi.org/10.1080/15715124.2017.1394315.
Watanabe, A. 1987. “3-dimensional numerical model of beach evolution.” In Proc., Int. Symp. on Coastal Sediment Process, 802–817. Reston, VA: ASCE.
Wilcock, P. R., and J. C. Crowe. 2003. “Surface–Based transport model for mixed-size sediment.” J. Hydraul. Eng. 129 (2): 120–128. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120).
Wu, W., W. Rodi, and T. Wenka. 2000a. “3D numerical modeling of flow and sediment transport open channels.” J. Hydraul. Eng. 126 (1): 4–15. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:1(4).
Wu, W., S. S. Y. Wang, and Y. Jia. 2000b. “Incipient motion and bed load transport for non-uniform mixtures.” J. Hydraul. Res. 38 (6): 427–434. https://doi.org/10.1080/00221680009498296.
Xu, Y., and X. Liu. 2017. “Effects of different instream structure representations in computational fluid dynamics models—Taking engineered log jams (ELJ) as an example.” Water 9 (2): 110. https://doi.org/10.3390/w9020110.
Xu, Y., and X. Liu. 2021. “An immersed boundary method with y+-Adaptation wall function for smooth wall shear.” Int. J. Numer. Methods Fluids 93 (6): 1929–1946. https://doi.org/10.1002/fld.4960.
Zhang, W., M. U. Zapata, X. Bai, D. Pham-Van-Bang, and K. D. Nguyen. 2020. “Three-dimensional simulation of horseshoe vortex and local scour around a vertical cylinder using an unstructured finite-volume technique.” Int. J. Sediment Res. 35 (3): 295–306. https://doi.org/10.1016/j.ijsrc.2019.09.001.
Zhao, C., H. Fang, Y. Liu, S. Dey, and G. He. 2020. “Impact of particle shape on saltating mode of bedload transport sheared by turbulent flow.” J. Hydraul. Eng. 146 (5): 1–13. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001735.
Zhou, K., J. G. Duan, and F. A. Bombardelli. 2020. “Experimental and theoretical study of local scour around three-pier group.” J. Hydraul. Eng. 146 (10): 04020069. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001794.
Zounemat-Kermani, M., A. A. Beheshti, B. Ataie-Ashtiani, and S. R. Sabbagh-Yazdi. 2009. “Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system.” Appl. Soft Comput. 9 (2): 746–755. https://doi.org/10.1016/j.asoc.2008.09.006.
Zyserman, J., and J. Fredsøe. 1994. “Data analysis of bed concentration of suspended sediment.” J. Hydraul. Eng. 120 (9): 1021–1042. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:9(1021).

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 148Issue 11November 2022

History

Published online: Sep 10, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 10, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Hydraulic Engineer (Specialist), Technical Service Center, US Bureau of Reclamation, Denver, CO (corresponding author). ORCID: https://orcid.org/0000-0002-3214-8494. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Institute of Computational and Data Sciences, Pennsylvania State Univ., State College, PA. ORCID: https://orcid.org/0000-0002-8296-7076. Email: [email protected]
Gerald T. and Lillian P. Orlob Professor of Water Resources Engineering, Dept. of Civil and Environmental Engineering, Univ. of California, Davis, CA. ORCID: https://orcid.org/0000-0001-8362-0739. Email: [email protected]
Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., State College, PA. ORCID: https://orcid.org/0000-0002-4722-148X. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • 3D Numerical Simulations of the Bed Evolution at an Open-Channel Junction in Flood Conditions, Journal of Irrigation and Drainage Engineering, 10.1061/JIDEDH.IRENG-10321, 150, 3, (2024).
  • Numerical Modeling of Solitary Wave-Induced Flow and Scour around a Square Onshore Structure, Journal of Marine Science and Engineering, 10.3390/jmse11010198, 11, 1, (198), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share