Technical Papers
Jul 22, 2022

Functional Relationships between Critical Erosion Thresholds of Fine Reservoir Sediments and Their Sedimentological Characteristics

Publication: Journal of Hydraulic Engineering
Volume 148, Issue 10

Abstract

This study investigated multivariate relationships between critical erosion thresholds of reservoir sediments and their physicochemical and biological characteristics to unravel the effect of sedimentological parameters on fine sediment erosion. We collected 22 sediment cores from the deposits of two reservoirs located in southern Germany, Grosser Brombachsee (GBS), and Schwarzenbachtalsperre (SBT). An erosion flume and an advanced photogrammetric method were used to quantify critical erosion thresholds for a succession of vertical layers over sediment depth. The functional relationships between the critical erosion thresholds and a collection of sediment parameters including bulk density, sediment composition, percentiles, cation exchange capacity, organic content, extracellular polymeric substances (EPS proteins and carbohydrates), and chlorophyll-a were examined. The clay-dominated sediments of the GBS with comparatively low total organic carbon and sand content were, on average, 10 times more stable than the sandy sediments of the SBT. Consequently, for the clay-dominated sediments, strong positive correlations were found between the erosion thresholds and clay content. In contrast, the sandy sediment layers experienced strong positive correlations with the sand content and percentiles. The bulk density was mainly positively correlated, and the total organic carbon content was mainly negatively correlated, with the erosion thresholds. Furthermore, EPS and chlorophyll-a were not good indicators for the erosion thresholds, suggesting an ambiguous influence of biology. Generally, the strength of the relations decreased for sediment layers deeper than 10 cm. Overall, our results underline the need to investigate the influence of sediment characteristics on fine sediment erodibility from varying natural environments.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated or used during the study are available in an online repository in accordance with the funder data retention policies (Beckers et al. 2021). Direct link to the data: https://doi.org/10.5281/zenodo.4474529.

Acknowledgments

Felix Beckers and Kaan Koca contributed equally to this work and share first authorship. This study was carried out within the project CHARM (Challenges of Reservoir Management)–Meeting Environmental and Social Requirements. The project is funded by the Ministry of Science, Research, and Arts of the federal state of Baden-Württemberg, Germany. It is part of the Water Research Network Baden-Württemberg. We gratefully acknowledge the help of Mr. Ruslan Biserov in conducting various erosion experiments. We also thank colleagues and student assistants involved in the CHARM project, along with the Elite Program of the Baden-Württemberg Stiftung for the postdoctoral fellowship (S.H). The authors declare no conflict of interest.

References

Aberle, J. 2008. “Measurement techniques for the estimation of cohesive sediment erosion.” In Hydraulic methods for catastrophes: Floods, droughts, environmental disasters, edited by P. M. Rowiński, 5–19. Warszawa, Poland: Institute of Geophysics Polish Academy of Sciences.
Aberle, J., V. Nikora, and R. Walters. 2006. “Data interpretation for in situ measurements of cohesive sediment erosion.” J. Hydraul. Eng. 132 (6): 581–588. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:6(581).
Annandale, G. 1987. Reservoir sedimentation. Burlington, VT: Elsevier Science.
Annandale, G. W., P. Karki, and G. L. Morris. 2016. Extending the life of reservoirs: Sustainable sediment management for dams and run-of-river hydropower. Washington, DC: World Bank.
Beckers, F., R. Biserov, and S. Wieprecht. 2019. Experimental investigation of sediment stability at reservoirs on the Rhone River. Stuttgart, Germany: Institute for Modelling Hydraulic and Environmental Systems.
Beckers, F., S. Haun, and M. Noack. 2018. “Experimental investigation of reservoir sediments.” In Vol. 40 of Proc., River Flow Conf., 03030. Les Ulis, France: E3S Web Conference.
Beckers, F., C. Inskeep, S. Haun, G. Schmid, S. Wieprecht, and M. Noack. 2020. “High spatiotemporal resolution measurements of cohesive sediment erosion.” Earth Surf. Processes Landforms 45 (11): 2432–2449. https://doi.org/10.1002/esp.4889.
Beckers, F., K. Koca, S. Haun, M. Noack, S. U. Gerbersdorf, and S. Wieprecht. 2021. “Data related to the manuscript ‘Functional relationships between critical erosion thresholds of fine reservoir sediments and their sedimentological characteristics’.” Zenodo. Accessed January 28, 2021. https://doi.org/10.5281/zenodo.4474529.
Berlamont, J., M. Ockenden, E. Toorman, and J. Winterwerp. 1993. “The characterisation of cohesive sediment properties.” Coastal Eng. 21 (1–3): 105–128. https://doi.org/10.1016/0378-3839(93)90047-C.
Bhattacharya, B., R. Price, and D. Solomatine. 2005. “Data-driven modelling in the context of sediment transport.” Phys. Chem. Earth, Parts A/B/C 30 (4): 297–302. https://doi.org/10.1016/j.pce.2004.12.001.
Black, K. S., T. J. Tolhurst, D. M. Paterson, and S. E. Hagerthey. 2002. “Working with natural cohesive sediments.” J. Hydraul. Eng. 128 (1): 2–8. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(2).
Briaud, J. L., F. C. K. Ting, H. C. Chen, Y. Cao, S. W. Han, and K. W. Kwak. 2001. “Erosion function apparatus for scour rate predictions.” J. Geotech. Geoenviron. Eng. 127 (2): 105–113. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:2(105).
Briaud, J.-L. 2008. “Case histories in soil and rock erosion: Woodrow Wilson bridge, Brazos River Meander, Normandy Cliffs, and New Orleans Levees.” J. Geotech. Geoenviron. Eng. 134 (10): 1425–1447. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1425).
Briaud, J.-L., A. V. Govindasamy, and I. Shafii. 2017. “Erosion charts for selected geomaterials.” J. Geotech. Geoenviron. Eng. 143 (10): 04017072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001771.
Buffington, J. M., and D. R. Montgomery. 1997. “A systematic analysis of eight decades of incipient motion studies, with special reference to gravel-bedded rivers.” Water Resour. Res. 33 (8): 1993–2029. https://doi.org/10.1029/96WR03190.
Burt, N., R. Parker, and J. H. Watts. 1997. Cohesive sediments. Chichester, UK: Wiley.
Daus, M., K. Koberger, N. Gnutzmann, T. Hertrich, and R. Glaser. 2019. “Transferring water while transforming landscape: New societal implications, perceptions and challenges of management in the reservoir system Franconian Lake District.” Water 11 (12): 2469. https://doi.org/10.3390/w11122469.
Debnath, K., and S. Chaudhuri. 2010. “Cohesive sediment erosion threshold: A review.” ISH J. Hydraul. Eng. 16 (1): 36–56. https://doi.org/10.1080/09715010.2010.10514987.
Debnath, K., V. Nikora, J. Aberle, B. Westrich, and M. Muste. 2007. “Erosion of cohesive sediments: Resuspension, bed load, and erosion patterns from field experiments.” J. Hydraul. Eng. 133 (5): 508–520. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:5(508).
de Brouwer, J., E. de Deckere, and L. Stal. 2003. “Distribution of extracellular carbohydrates in three intertidal mudflats in Western Europe.” Estuarine Coast. Shelf Sci. 56 (2): 313–324. https://doi.org/10.1016/S0272-7714(02)00164-6.
Deutsches TalsperrenKomitee e. V. 2013. Talsperren in Deutschland (Dams and reservoirs). [In German.] Wiesbaden, Germany: Springer Fachmedien Wiesbaden.
DIN (Deutsches Institut für Normung e.V.). 1985. German standard methods for the examination of water, waste water and sludge; test methods using water organisms (group L); determination of chlorophyll-a in surface water (L 16). DIN 38412-16:1985-12. Berlin: Beuth Verlag.
DIN (Deutsches Institut für Normung e.V.). 2001. Characterization of waste—Determination of total organic carbon (TOC) in waste, sludges and sediments (December). DIN EN13137:2001-12. Berlin: Beuth Verlag.
DuBois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. “Colorimetric method for determination of sugars and related substances.” Anal. Chem. 28 (3): 350. https://doi.org/10.1021/ac60111a017.
Dück, Y., A. Lorke, C. Jokiel, and J. Gierse. 2019. “Laboratory and field investigations on freeze and gravity core sampling and assessment of coring disturbances with implications on gas bubble characterization.” Limnol. Oceanogr. Methods 17 (11): 585–606. https://doi.org/10.1002/lom3.10335.
Encinas Fernandez, J., H. Hofmann, and F. Peeters. 2020. “Diurnal pumped-storage operation minimizes methane ebullition fluxes from hydropower reservoirs.” Water Resour. Res. 56 (12): e2020WR027221. https://doi.org/10.1029/2020WR027221.
Farnebäck, G. 2003. “Two-frame motion estimation based on polynomial expansion.” In Vol. 2749 of Image analysis, edited by G. Goos, J. Hartmanis, J. vanLeeuwen, J. Bigun, and T. Gustavsson, 363–370. Berlin: Springer Berlin Heidelberg.
Fukuda, M. K., and W. Lick. 1980. “The entrainment of cohesive sediments in freshwater.” J. Geophys. Res. 85 (C5): 2813–2824. https://doi.org/10.1029/JC085iC05p02813.
Gerbersdorf, S. U., et al. 2020. “Exploring flow-biofilm- sediment interactions: Assessment of current status and future challenges.” Water Res. 185 (Oct): 116182. https://doi.org/10.1016/j.watres.2020.116182.
Gerbersdorf, S. U., T. Jancke, and B. Westrich. 2007. “Sediment properties for assessing the erosion risk of contaminated riverine sites. An approach to evaluate sediment properties and their covariance patterns over depth in relation to erosion resistance. First investigations in natural sediments (11 pp).” J. Soils Sediments 7 (1): 25–35. https://doi.org/10.1065/jss2006.11.190.
Grabowski, R. C., I. G. Droppo, and G. Wharton. 2011. “Erodibility of cohesive sediment: The importance of sediment properties.” Earth Sci. Rev. 105 (3–4): 101–120. https://doi.org/10.1016/j.earscirev.2011.01.008.
Gu, Y., Y. Zhang, D. Qian, Y. Tang, Y. Zhou, and D. Z. Zhu. 2020. “Effects of microbial activity on incipient motion and erosion of sediment.” Environ. Fluid Mech. 20 (1): 175–188. https://doi.org/10.1007/s10652-019-09706-9.
Gularte, R., W. Kelly, and V. Nacci. 1980. “Erosion of cohesive sediments as a rate process.” Ocean Eng. 7 (4): 539–551. https://doi.org/10.1016/0029-8018(80)90051-7.
Harrell, F. E., Jr., and C. Dupont. 2020. “Hmisc: Harrell Miscellaneous.” Accessed October 20, 2020. https://CRAN.R-project.org/package=Hmisc.
ISO. 2017. Geotechnical investigation and testing: Identification and classification of soil—Part 1: Identification and description. ISO 14688-1:2017. Geneva: ISO.
ISO. 2018. Soil quality—Determination of effective cation exchange capacity (CEC) and exchangeable cations using a hexamminecobalttrichloride solution. ISO 23470:2018. Geneva: ISO.
Jepsen, R., J. McNeil, and W. Lick. 2000. “Effects of gas generation on the density and erosion of sediments from the Grand River.” J. Great Lakes Res. 26 (2): 209–219. https://doi.org/10.1016/S0380-1330(00)70687-3.
Kern, U., I. Haag, V. Schurlein, M. Holzwarth, and B. Westrich. 1999. “Ein Stromungskanal zur Ermittlung der tiefenabhangigen Erosionsstabilitat von Gewassersedimenten: Das SETEG- System.” [In German.] Wasserwirtschaft 89 (2): 72–77.
Kimiaghalam, N., S. P. Clark, and H. Ahmari. 2016. “An experimental study on the effects of physical, mechanical, and electrochemical properties of natural cohesive soils on critical shear stress and erosion rate.” Int. J. Sediment Res. 31 (1): 1–15. https://doi.org/10.1016/j.ijsrc.2015.01.001.
Koca, K., and S. U. Gerbersdorf. 2019. “Biofilms stabilize fine sediment in reservoirs: Dynamic interactions between flow, substrate and community.” In Proc., 10th Ecomeeting. Stuttgart, Germany: Univ. of Stuttgart.
Kondolf, G. M., et al. 2014. “Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents.” Earth’s Future 2 (5): 256–280. https://doi.org/10.1002/2013EF000184.
Kothyari, U. C., and R. K. Jain. 2008. “Influence of cohesion on the incipient motion condition of sediment mixtures.” Water Resour. Res. 44 (4): W04410. https://doi.org/10.1029/2007WR006326.
Krishnappan, B. G., M. Stone, S. J. Granger, H. R. Upadhayay, Q. Tang, Y. Zhang, and A. L. Collins. 2020. “Experimental investigation of erosion characteristics of fine-grained cohesive sediments.” Water 12 (5): 1511. https://doi.org/10.3390/w12051511.
Kuivila, K., J. Murray, A. Devol, and P. Novelli. 1989. “Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington.” Geochim. Cosmochim. Acta 53 (2): 409–416. https://doi.org/10.1016/0016-7037(89)90392-X.
Lau, Y. L., I. G. Droppo, and B. G. Krishnappan. 2001. “Sequential erosion/deposition experiments: Demonstrating the effects of depositional history on sediment erosion.” Water Res. 35 (11): 2767–2773. https://doi.org/10.1016/S0043-1354(00)00559-5.
Le Hir, P., P. Cann, B. Waeles, H. Jestin, and P. Bassoullet. 2008. “Erodibility of natural sediments: Experiments on sand/mud mixtures from laboratory and field erosion tests.” In Vol. 9 of Sediment and ecohydraulics, edited by T. Kusuda, H. Yamanishi, J. Spearman, and J. Z. Gailani, 137–153. Amsterdam, Netherlands: Elsevier.
Le Hir, P., Y. Monbet, and F. Orvain. 2007. “Sediment erodability in sediment transport modelling: Can we account for biota effects?” Cont. Shelf Res. 27 (8): 1116–1142. https://doi.org/10.1016/j.csr.2005.11.016.
Lepage, H., M. Masson, D. Delanghe, and C. Le Bescond. 2019. “Grain size analyzers: Results of an intercomparison study.” SN Appl. Sci. 1 (9): 1100. https://doi.org/10.1007/s42452-019-1133-9.
Lick, W., and J. McNeil. 2001. “Effects of sediment bulk properties on erosion rates.” Sci. Total Environ. 266 (1–3): 41–48. https://doi.org/10.1016/S0048-9697(00)00747-6.
Malvern Instruments. 2007. Mastersizer 2000 user manual. Worcestershire, UK: Malvern Instruments.
Mayar, M. A., G. Schmid, S. Wieprecht, and M. Noack. 2019. “Optimizing vertical profile measurements setup of gamma ray attenuation.” Radiat. Phys. Chem. 164 (Nov): 108376. https://doi.org/10.1016/j.radphyschem.2019.108376.
Mayar, M. A., G. Schmid, S. Wieprecht, and M. Noack. 2020. “Proof-of-concept for nonintrusive and undisturbed measurement of sediment infiltration masses using gamma-ray attenuation.” J. Hydraul. Eng. 146 (5): 04020032. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001734.
McIntyre, A. D. 1971. “Deficiency of gravity corers for sampling meiobenthos and sediments.” Nature 231 (5300): 260. https://doi.org/10.1038/231260a0.
McNeil, J., C. Taylor, and W. Lick. 1996. “Measurements of erosion of undisturbed bottom sediments with depth.” J. Hydraul. Eng. 122 (6): 316–324. https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(316).
Mehta, A. 1991. Characterization of cohesive soil bed surface erosion, with special reference to the relationship between erosion shear strength and bed density. Gainesville, FL: Univ. of Florida.
Mehta, A. J., and E. Partheniades. 1982. “Resuspension of deposited cohesive sediment beds.” In Proc., Cape Town, 1569–1588. New York: Coastal Engineering Research Council of ASCE.
Mitchener, H., and H. Torfs. 1995. “Erosion of mud-sand mixtures.” Coast. Eng. 29 (1996): 1–25. https://doi.org/10.1016/S0378-3839(96)00002-6.
Morelle, J., P. Claquin, and F. Orvain. 2020. “Evidence for better microphytobenthos dynamics in mixed sand/mud zones than in pure sand or mud intertidal flats (Seine estuary, Normandy, France).” PLoS One 15 (8): e0237211. https://doi.org/10.1371/journal.pone.0237211.
Morris, G. L. 2016. “Reservoir sustainability best practices guidance.” In Chap. 9 in Extending the life of reservoirs: Sustainable sediment management for dams and run-of-river hydropower, edited by G. W. Annandale, G. L. Morris, and P. Karki, 149–159. Washington, DC: World Bank.
Mouris, K., F. Beckers, and S. Haun. 2018. “Three-dimensional numerical modeling of hydraulics and morphodynamics of the Schwarzenbach reservoir.” In Vol. 40 of Proc., River Flow Conf., 03005. Les Ulis Cedex A, France: E3S Web Conference.
Noack, M., S. Gerbersdorf, G. Hillebrand, and S. Wieprecht. 2015. “Combining field and laboratory measurements to determine the erosion risk of cohesive sediments best.” Water 7 (9): 5061–5077. https://doi.org/10.3390/w7095061.
Noack, M., G. Schmid, F. Beckers, S. Haun, and S. Wieprecht. 2018. “Photo-Sed—Photogrammetric sediment erosion detection.” Geosciences 8 (7): 243. https://doi.org/10.3390/geosciences8070243.
Panagiotopoulos, I., G. Voulgaris, and M. Collins. 1997. “The influence of clay on the threshold of movement of fine sandy beds.” Coastal Eng. 32 (1): 19–43. https://doi.org/10.1016/S0378-3839(97)00013-6.
Partheniades, E. 2007. Engineering properties and hydraulic behavior of cohesive sediments. Boca Raton, FL: CRC.
Paterson, D. M. 1997. “Biological mediation of sediment erodibility: Ecology and physical dynamics.” In Cohesive sediments, edited by N. Burt, R. Parker, and J. Watts, 215–229. New York: Wiley.
Paterson, D. M., J. A. Hope, J. Kenworthy, C. L. Biles, and S. U. Gerbersdorf. 2018. “Form, function and physics: The ecology of biogenic stabilization.” J. Soils Sediments 18 (10): 3044–3054. https://doi.org/10.1007/s11368-018-2005-4.
Peeters, F., J. Encinas Fernandez, and H. Hofmann. 2019. “Sediment fluxes rather than oxic methanogenesis explain diffusive CH4 emissions from lakes and reservoirs.” Sci. Rep. 9 (1): 243. https://doi.org/10.1038/s41598-018-36530-w.
Perera, C., J. Smith, W. Wu, D. Perkey, and A. Priestas. 2020. “Erosion rate of sand and mud mixtures.” Int. J. Sediment Res. 35 (6): 563–575. https://doi.org/10.1016/j.ijsrc.2020.06.004.
Perkey, D. W., S. J. Smith, and A. M. Priestas. 2020. Erosion thresholds and rates for sand-mud mixtures. TR-20-13. Vicksburg, MS: US Army Engineer Research and Development Center.
Peterson, B. G., and P. Carl. 2020. “Performance analytics: Econometric tools for performance and risk analysis.” Accessed October 22, 2020. https://CRAN.R-project.org/package=PerformanceAnalytics.
Peteuil, C., M. Jodeau, M. De Linares, E. Valette, D. Alliau, C. Wirz, T. Fretaud, G. Antoine, and M. Secher. 2018. “Toward an operational approach for the characterization and modelling of fine sediments dynamics in reservoirs.” In Vol. 40 of Proc., River Flow Conf. Lyon, 03028. Les Ulis Cedex A, France: E3S Web Conference.
Raunkjær, K., T. Hvitved-Jacobsen, and P. H. Nielsen. 1994. “Measurement of pools of protein, carbohydrate and lipid in domestic wastewater.” Water Res. 28 (2): 251–262. https://doi.org/10.1016/0043-1354(94)90261-5.
R Core Team. 2017. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Righetti, M., and C. Lucarelli. 2007. “May the Shields theory be extended to cohesive and adhesive benthic sediments?” J. Geophys. Res. 112: C05039. https://doi.org/10.1029/2006JC003669.
Roberts, J. D., R. A. Jepsen, and S. C. James. 2003. “Measurements of sediment erosion and transport with the adjustable shear stress erosion and transport flume.” J. Hydraul. Eng. 129 (11): 862–871. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:11(862).
Sanford, L. P. 2006. “Uncertainties in sediment erodibility estimates due to a lack of standards for experimental protocols and data interpretation: Standards and erodibility uncertainties.” Integr. Environ. Assess. Manage. 2 (1): 29–34. https://doi.org/10.1002/ieam.5630020106.
Sanford, L. P., and J. P.-Y. Maa. 2001. “A unified erosion formulation for fine sediments.” Mar. Geol. 179 (1–2): 9–23. https://doi.org/10.1016/S0025-3227(01)00201-8.
Schafer Rodrigues Silva, A., M. Noack, D. Schlabing, and S. Wieprecht. 2018. “A data-driven fuzzy approach to simulate the critical shear stress of mixed cohesive/non-cohesive sediments.” J. Soils Sediments 18 (10): 3070–3081. https://doi.org/10.1007/s11368-017-1860-8.
Segers, R. 1998. “Methane production and methane consumption: A review of processes underlying wetland methane fluxes.” Biogeochemistry 41 (1): 23–51. https://doi.org/10.1023/A:1005929032764.
Shapiro, S. S., and M. B. Wilk. 1965. “An analysis of variance test for normality (complete samples).” Biometrika 52 (3–4): 591–611. https://doi.org/10.1093/biomet/52.3-4.591.
Shields, A. 1936. “Application of mechanical similarity and turbulence research to bedload motion.” [In German.] Ph.D. thesis, Preussischen Versuchsanstalt fur Wasserbau und Schiffbau.
Thebrath, B., F. Rothfuss, M. Whiticar, and R. Conrad. 1993. “Methane production in littoral sediment of Lake Constance.” FEMS Microbiol. Lett. 102 (3–4): 279–289. https://doi.org/10.1111/j.1574-6968.1993.tb05819.x.
Thom, M., H. Schmidt, S. U. Gerbersdorf, and S. Wieprecht. 2015. “Seasonal biostabilization and erosion behavior of fluvial biofilms under different hydrodynamic and light conditions.” Int. J. Sediment Res. 30 (4): 273–284. https://doi.org/10.1016/j.ijsrc.2015.03.015.
Tolhurst, T., E. Defew, J. de Brouwer, K. Wolfstein, L. Stal, and D. Paterson. 2006. “Small scale temporal and spatial variability in the erosion threshold and properties of cohesive intertidal sediments.” Cont. Shelf Res. 26 (3): 351–362. https://doi.org/10.1016/j.csr.2005.11.007.
Tsuneda, S., H. Aikawa, H. Hayashi, A. Yuasa, and A. Hirata. 2003. “Extracellular polymeric substances responsible for bacterial adhesion onto solid surface.” FEMS Microbiol. Lett. 223 (2): 287–292. https://doi.org/10.1016/S0378-1097(03)00399-9.
Valentine, K., G. Mariotti, and S. Fagherazzi. 2014. “Repeated erosion of cohesive sediments with biofilms.” Adv. Geosci. 39 (Apr): 9–14. https://doi.org/10.5194/adgeo-39-9-2014.
Van Ledden, M. 2003. “Sand-mud segregation in estuaries and tidal basins.” Ph.D. thesis, Dept. of Civil Engineering and Geosciences, Delft Univ. of Technology.
van Rijn, L. C. 2020. “Erodibility of mud-sand bed mixtures.” J. Hydraul. Eng. 146 (1): 04019050. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001677.
Wei, T., and V. Simko. 2017. “R package “corrplot”: Visualization of a correlation matrix.” Accessed November 14, 2017. https://github.com/taiyun/corrplot.
Wickham, H., R. Francois, L. Henry, and K. Muller. 2020. “dplyr: A Grammar of Data Manipulation.” Accessed May 5, 2020. https://CRAN.R-project.org/package=dplyr.
Winterwerp, J. C., W. G. M. van Kesteren, B. van Prooyen, and W. Jacobs. 2012. “A conceptual framework for shear flow-induced erosion of soft cohesive sediment beds.” J. Geophys. Res. Oceans 117 (C10). https://doi.org/10.1029/2012JC008072.
Wu, W., C. Perera, J. Smith, and A. Sanchez. 2018. “Critical shear stress for erosion of sand and mud mixtures.” J. Hydraul. Res. 56 (1): 96–110. https://doi.org/10.1080/00221686.2017.1300195.
Yang, Y., S. Gao, Y. P. Wang, J. Jia, J. Xiong, and L. Zhou. 2019. “Revisiting the problem of sediment motion threshold.” Cont. Shelf Res. 187 (Oct): 103960. https://doi.org/10.1016/j.csr.2019.103960.
Young, R. N., and J. B. Southard. 1978. “Erosion of fine-grained marine sediments: Sea-floor and laboratory experiments.” Geol. Soc. Am. Bull. 89 (5): 663–672. https://doi.org/10.1130/0016-7606(1978)89%3C663:EOFMSS%3E2.0.CO;2.
Zhang, M., and G. Yu. 2017. “Critical conditions of incipient motion of cohesive sediments.” Water Resour. Res. 53 (9): 7798–7815. https://doi.org/10.1002/2017WR021066.
Zhu, Q., B. van Prooyen, D. Maan, Z. Wang, P. Yao, T. Daggers, and S. Yang. 2019. “The heterogeneity of mudflat erodibility.” Geomorphology 345 (Nov): 106834. https://doi.org/10.1016/j.geomorph.2019.106834.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 148Issue 10October 2022

History

Received: Jan 30, 2021
Accepted: Jan 30, 2022
Published online: Jul 22, 2022
Published in print: Oct 1, 2022
Discussion open until: Dec 22, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Research Associate, Institute for Modelling Hydraulic and Environmental Systems, Dept. of Hydraulic Engineering and Water Resources Management, Univ. of Stuttgart, Stuttgart 70569, Germany; Consultant, Ministry of the Environment, Climate Protection and the Energy Sector Baden-Württemberg, Stuttgart 70182, Germany (corresponding author). ORCID: https://orcid.org/0000-0003-2391-3032. Email: [email protected]
Research Associate, Institute for Modelling Hydraulic and Environmental Systems, Dept. of Hydraulic Engineering and Water Resources Management, Univ. of Stuttgart, Stuttgart 70569, Germany. ORCID: https://orcid.org/0000-0003-1200-7499
Senior Researcher, Institute for Modelling Hydraulic and Environmental Systems, Dept. of Hydraulic Engineering and Water Resources Management, Univ. of Stuttgart, Stuttgart 70569, Germany. ORCID: https://orcid.org/0000-0002-8202-4633
Markus Noack
Professor, Faculty of Architecture and Civil Engineering, Karlsruhe Univ. of Applied Science, Karlsruhe 76133, Germany.
Sabine U. Gerbersdorf
Consultant, Ministry of Science, Research and Arts Baden–Württemberg, Stuttgart 70173, Germany.
Professor, Institute for Modelling Hydraulic and Environmental Systems, Dept. of Hydraulic Engineering and Water Resources Management, Univ. of Stuttgart, Stuttgart 70569, Germany. ORCID: https://orcid.org/0000-0001-6776-2446

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share