Technical Papers
Apr 4, 2022

Sediment Nourishments to Mitigate Channel Bed Incision in Engineered Rivers

Publication: Journal of Hydraulic Engineering
Volume 148, Issue 6

Abstract

Engineering modifications of rivers, e.g., dams or groynes, often induce long-term riverbed erosion, which can be mitigated with sediment nourishments. Here, we consider nourishments to mitigate channel bed erosion induced by channel narrowing, as opposed to the more common application downstream of dams. Our objective is to assess and quantify how dumping location, grainsize, and volume are important for mitigation efficacy. Our results show that erosion can be mitigated if nourishments change the sediment flux such that the corresponding equilibrium channel slope is increased. This is achieved by coarsening the sediment flux throughout the reach, increasing magnitude of the sediment flux, or both. Flux is coarsened via additions of sediment at or coarser than the bed surface and nourished sediment should be distributed throughout the incising reach. The second option is nourishing a large volume of relatively fine sediment to increase the equilibrium channel slope. Additions of fine sediment in small volumes decrease the equilibrium channel slope and enhance erosion, because the fine sediment flux makes the gravel more mobile.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the submitted article. The Elv model code is available at: https://sites.google.com/view/czapiga-et-al-2021-jhe. All data for this paper are cited and referred to in the reference list.

Acknowledgments

This study is carried out as part of the Water2015 project 14508 “Long-term bed degradation in rivers: causes and mitigation,” which is funded by the NWO Domain Applied and Engineering Sciences (AES, Netherlands). There are no conflicts of interest.

References

Alexander, J., R. Wilson, and W. Green. 2012. A brief history and summary of the effects of river engineering and dams on the mississippi river system and delta. Reston, VA: USGS.
Alexy, M. 2018. Eindimensionales Feststofftransportmodell für den Niederrhein. [In German.]. Karlsruhe: Bundesanstalt für Wasserbau.
An, C., G. Parker, M. A. Hassan, and X. Fu. 2019. “Can magic sand cause massive degradation of a gravel-bed river at the decadal scale? Shiting River, China.” Geomorphology 327 (Feb): 147–158. https://doi.org/10.1016/j.geomorph.2018.10.026.
Anderson, E. P., et al. 2018. “Fragmentation of Andes-to-Amazon connectivity by hydropower dams.” Sci. Adv. 4 (1): eaao1642. https://doi.org/10.1126/sciadv.aao1642.
Arkesteijn, L., A. Blom, M. J. Czapiga, V. Chavarrías, and R. J. Labeur. 2019. “The quasi-equilibrium longitudinal profile in backwater reaches of the engineered alluvial river: A space-marching method.” J. Geophys. Res.: Earth Surf. 124 (11): 2542–2560. https://doi.org/10.1029/2019JF005195.
Arkesteijn, L., A. Blom, and R. J. Labeur. 2021. “A rapid method for modeling transient river response under stochastic controls with applications to sea level rise and sediment nourishment.” J. Geophys. Res.: Earth Surf. 126 (12): e2021JF006177. https://doi.org/10.1029/2021JF006177.
Arnaud, F., H. Piégay, D. Béal, P. Collery, L. Vaudor, and A.-J. Rollet. 2017. “Monitoring gravel augmentation in a large regulated river and implications for process-based restoration.” Earth Surf. Processes Landforms 42 (13): 2147–2166. https://doi.org/10.1002/esp.4161.
Arnaud-Fassetta, G. 2003. “River channel changes in the Rhône Delta (France) since the end of the Little Ice Age: Geomorphological adjustment to hydroclimatic change and natural resource management.” Catena 51 (2): 141–172. https://doi.org/10.1016/S0341-8162(02)00093-0.
Ashida, K., and M. Michiue. 1972. “Study on hydraulic resistance and bedload transport in alluvial streams.” In Vol. 206 of Proc., Japan Society of Civil Engineers, 59–69. Tokyo: Japan Society of Civil Engineers.
Baar, A. W., S. A. H. Weisscher, and M. G. Kleinhans. 2020. “Interaction between lateral sorting in river bends and vertical sorting in dunes.” Sedimentology 67 (1): 606–626. https://doi.org/10.1111/sed.12656.
Battisacco, E., M. J. Franca, and A. J. Schleiss. 2016. “Sediment replenishment: Influence of the geometrical configuration on the morphological evolution of channel-bed.” Water Resour. Res. 52 (11): 8879–8894. https://doi.org/10.1002/2016WR019157.
Baxter, R. 1977. “Environmental effects of dams and impoundments.” Annu. Rev. Ecol. Syst. 8 (1) 255–283. https://doi.org/10.1146/annurev.es.08.110177.001351.
Blom, A., L. Arkesteijn, V. Chavarrías, and E. Viparelli. 2017a. “The equilibrium alluvial river under variable flow and its channel-forming discharge.” J. Geophys. Res.: Earth Surf. 122 (10): 1924–1948. https://doi.org/10.1002/2017JF004213.
Blom, A., V. Chavarrías, R. I. Ferguson, and E. Viparelli. 2017b. “Advance, retreat, and halt of abrupt gravel-sand transitions in alluvial rivers.” Geophys. Res. Lett. 44 (19): 9751–9760. https://doi.org/10.1002/2017GL074231.
Blom, A., E. Viparelli, and V. Chavarrías. 2016. “The graded alluvial river: Profile concavity and downstream fining.” Geophys. Res. Lett. 43 (12): 6285–6293. https://doi.org/10.1002/2016GL068898.
Brandt, S. A. 2000. “Classification of geomorphological effects downstream of dams.” Catena 40 (4): 375–401. https://doi.org/10.1016/S0341-8162(00)00093-X.
Buck, W. 1993. “Eingriffe und Ereignisse im 19. und 20. Jahrhundert: Oberrhein bis zum Neckar.” [In German.] In Der Rhein unter der Einwirkung des Menschen—Ausbau, Schiffahrt, 55–197. Lelystad, Netherlands: International Commision for the Hydrology of the Rhine Basin.
Bunte, K. 2004. State of the science review gravel mitigation and augmentation below hydroelectric dams. Fort Collins, CO: USDA Forest Service.
Chardon, V., L. Schmitt, H. Piégay, F. Arnaud, J. Serouilou, J. Houssier, and A. Clutier. 2018. “Geomorphic effects of gravel augmentation on the Old Rhine River downstream from the Kembs Dam (France, Germany).” In Vol. 40 of Proc., E3S Web of Conf., 02028. Les Ulis, France: EDP Sciences.
Chavarrías, V., A. Blom, C. Orrú, J. P. Martín-Vide, and E. Viparelli. 2018a. “A sand-gravel gilbert delta subject to base level change.” J. Geophys. Res.: Earth Surf. 123 (5): 1160–1179. https://doi.org/10.1029/2017JF004428.
Chavarrías, V., G. Stecca, and A. Blom. 2018b. “Ill-posedness in modeling mixed sediment river morphodynamics.” Adv. Water Resour. 114 (Apr): 219–235. https://doi.org/10.1016/j.advwatres.2018.02.011.
Chavarrías, V., G. Stecca, A. Siviglia, and A. Blom. 2019. “A regularization strategy for modeling mixed-sediment river morphodynamics.” Adv. Water Resour. 127 (May): 291–309. https://doi.org/10.1016/j.advwatres.2019.04.001.
Dean, R. G. 2003. “Advanced series on ocean engineering.” In Vol. 18 of Beach nourishment: Theory and practice. River Edge, NJ: World Scientific Publishing Company.
Dietrich, W. E., J. W. Kirchner, H. Ikeda, and F. Iseya. 1989. “Sediment supply and the development of the coarse surface layer in gravel-bedded rivers.” Nature 340 (6230): 215–217. https://doi.org/10.1038/340215a0.
Dröge, B., H. Engel, and E. Gölz. 1992. “Channel erosion and erosion monitoring along the Rhine River.” In Vol. 210 of Proc. Sump. Symp. on Erosion and Sediment Transport Monitoring Programmes in River Basins, 493–503. Wallingford, UK: International Association of Hydrological Sciences.
Elkins, E. M., G. B. Pasternack, and J. E. Merz. 2007. “Use of slope creation for rehabilitating incised, regulated, gravel bed rivers.” Water Resour. Res. 43 (5): 1–16. https://doi.org/10.1029/2006WR005159.
Erskine, W. D. 1992. “Channel response to large-scale river training works: Hunter River, Australia.” Regul. Rivers: Res. Manage. 7 (3): 261–278. https://doi.org/10.1002/rrr.3450070305.
Ferguson, R. I., K. L. Prestegaard, and P. J. Ashworth. 1989. “Influence of sand on gydraulics and gravel transport in a braided gravel bed river.” Water Resour. Res. 25 (4): 635–643. https://doi.org/10.1029/WR025i004p00635.
Frings, R., R. Döring, C. Beckhausen, and H. Schüttrumpf. 2012. Sedimentologisch-Morphologischer Atlas des Niederrheins. Aachen, Germany: Rheinisch-Westfälische Technische Hochschule Aachen.
Frings, R. M., R. Döring, C. Beckhausen, H. Schüttrumpf, and S. Vollmer. 2014a. “Fluvial sediment budget of a modern, restrained river: The lower reach of the Rhine in Germany.” Catena 122 (Nov): 91–102. https://doi.org/10.1016/j.catena.2014.06.007.
Frings, R. M., N. Gehres, M. Promny, H. Middelkoop, H. Schüttrumpf, and S. Vollmer. 2014b. “Today’s sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif.” Geomorphology 204 (Jan): 573–587. https://doi.org/10.1016/j.geomorph.2013.08.035.
Gabriel, T., E. Kühne, S. Klos, A. Anlauf, E. Gölz, and P. Faulhaber. 2009. Sohlstabilisierungskonzept für die Elbe von Mühlberg bis zur Saalemündung. [In German.] Koblenz: Bundesanstalt für Wasserbau/German Federal Institute of Hydrology.
Galay, V. J. 1983. “Causes of river bed degradation.” Water Resour. Res. 19 (5): 1057–1090. https://doi.org/10.1029/WR019i005p01057.
Gasowski, Z. 1994. “L’enfoncement du Lit de la Loire/The entrenchment of the Loire’s river bed.” Rev. Géographie Lyon 69 (1): 41–45. https://doi.org/10.3406/geoca.1994.4236.
Gölz, E. 1994. “Bed degradation—Nature, causes, countermeasures.” Water Sci. Technol. 29 (3): 325–333. https://doi.org/10.2166/wst.1994.0130.
Gölz, E. 2002. “Iffezheim field test–three years experience with a petrographic tracer.” In Vol. 276 of The structure, function and management implications of fluvial sedimentary systems, 417. Wallingford, UK: International Association of Hydrological Sciences.
Gölz, E., H. Theis, and U. Trompeter. 2006. Tracer Test Iffezheim. Bielefeld: German Federal Institute of Hydrology.
Habersack, H., T. Hein, A. Stanica, I. Liska, R. Mair, E. Jäger, C. Hauer, and C. Bradley. 2016. “Challenges of river basin management: Current status of, and prospects for, the river Danube from a river engineering perspective.” Sci. Total Environ. 543 (Feb): 828–845. https://doi.org/10.1016/j.scitotenv.2015.10.123.
Hill, K. M., J. Gaffney, S. Baumgardner, P. Wilcock, and C. Paola. 2017. “Experimental study of the effect of grain sizes in a bimodal mixture on bed slope, bed texture, and the transition to washload.” Water Resour. Res. 53 (1): 923–941. https://doi.org/10.1002/2016WR019172.
Hirano, M. 1971. “River-bed degradation with armoring.” In Proc., Japan Society of Civil Engineers, 55–65. Tokyo: Japan Society of Civil Engineers.
Hoey, T. B., and R. Ferguson. 1994. “Numerical simulation of downstream fining by selective transport in gravel bed rivers: Model development and illustration.” Water Resour. Res. 30 (7): 2251–2260. https://doi.org/10.1029/94WR00556.
Iseya, F., and H. Ikeda. 1987. “Pulsations in bedload transport rates induced by a longitudinal sediment sorting: A flume study using sand and gravel mixtures.” Geogr. Ann. Ser. A Phys. Geogr. 69 (1): 15. https://doi.org/10.1080/04353676.1987.11880193.
Jackson, W. L., and R. L. Beschta. 1984. “Influence of increased sand delivery on the morphology of sand and gravel channels.” J. Am. Water Resour. Assoc. 20 (4): 527–533. https://doi.org/10.1111/j.1752-1688.1984.tb02835.x.
Kondolf, G. M. 1997. “Hungry water: Effects of dams and gravel mining on river channels.” Environ. Manage. 21 (4): 533–551. https://doi.org/10.1007/s002679900048.
Kondolf, G. M. 2000. “Assessing salmonid spawning gravel quality.” Trans. Am. Fish. Soc. 129 (1): 262–281. https://doi.org/10.1577/1548-8659(2000)129%3C0262:ASSGQ%3E2.0.CO;2.
Kuhl, D. 1993. Die Geschiebezugabe Unterhalb der Staustufe Iffezheim von 1978-1992. [In German.]. Karlsruhe, Germany: Bundesanstalt für Wasserbau.
Miwa, H., and G. Parker. 2012. “Numerical simulation of low-flow channel evolution due to sediment augmentation.” Int. J. Sediment Res. 27 (3): 351–361. https://doi.org/10.1016/S1001-6279(12)60040-7.
Miwa, H., and G. Parker. 2017. “Effects of sand content on initial gravel motion in gravel-bed rivers.” Earth Surf. Processes Landforms 42 (9): 1355–1364. https://doi.org/10.1002/esp.4119.
Montgomery, D. R. 1999. “Process domains and the river continuum.” J. Am. Water Resour. Assoc. 35 (2): 397–410. https://doi.org/10.1111/j.1752-1688.1999.tb03598.x.
Ock, G., T. Sumi, and Y. Takemon. 2013. “Sediment replenishment to downstream reaches below dams: Implementation perspectives.” Hydrol. Res. Lett. 7 (3): 54–59. https://doi.org/10.3178/hrl.7.54.
Ottevanger, W., S. Giri, and K. Sloff. 2015. Sustainable fairway Rhinedelta II—Effects of yearly bed stabilisation nourishments, delta program measures and training walls. Delft, Netherlands: Deltares.
Parker, G. 1991. “Selective sorting and abrasion of river gravel. II: Applications.” J. Hydraul. Eng. 117 (2): 150–171. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(150).
Parker, G. 2004. “1D sediment transport morphodynamics with applications to rivers and turbidity currents.” Accessed July 11, 2021. http://hydrolab.illinois.edu/people/parkerg/morphodynamics_e-book.htm.
Petit, F., D. Poinsart, and J.-P. Bravard. 1996. “Channel incision, gravel mining and bedload transport in the Rhône River upstream of Lyon, France (‘canal de Miribel’).” Catena 26 (3–4): 209–226. https://doi.org/10.1016/0341-8162(95)00047-X.
Quick, I., F. König, Y. Baulig, S. Schriever, and S. Vollmer. 2020. “Evaluation of depth erosion as a major issue along regulated rivers using the classification tool Valmorph for the case study of the Lower Rhine.” Int. J. River Basin Manage. 18 (2): 191–206. https://doi.org/10.1080/15715124.2019.1672699.
Schwerdtfeger, C. 2004. “Sediment feeding to reduce bed degradation of the Rhine River near the German/Dutch border.” M.S. thesis, Hydraulic Engineering, Unesco-IHE.
Sloff, C. J., and J. Sieben. 2008. “Model assessment of sediment nourishment in rivers with graded sediment.” In Vol. 2 of Proc., 5th IAHR Symp. on River, Coastal and Estuarine Morphodynamics (RCEM 2007), 1169–1176. New York: Taylor and Francis.
Surian, N., and M. Rinaldi. 2003. “Morphological response to river engineering and management in alluvial channels in Italy.” Geomorphology 50 (4): 307–326. https://doi.org/10.1016/S0169-555X(02)00219-2.
Toro-Escobar, C. M., C. Paola, and G. Parker. 1996. “Transfer function for the deposition of poorly sorted gravel in response to streambed aggradation.” J. Hydraul. Res. 35 (4): 35–53. https://doi.org/10.1080/00221689609498763.
van der Werf, J., J. Reinders, A. Van Rooijen, H. Holzhauer, and T. Ysebaert. 2015. “Evaluation of a tidal flat sediment nourishment as estuarine management measure.” Ocean Coastal Manage. 114 (Sep): 77–87. https://doi.org/10.1016/j.ocecoaman.2015.06.006.
Venditti, J. G., W. E. Dietrich, P. A. Nelson, M. A. Wydzga, J. Fadde, and L. Sklar. 2010a. “Effect of sediment pulse grain size on sediment transport rates and bed mobility in gravel bed rivers.” J. Geophys. Res.: Earth Surf. 115 (F3): 1–19. https://doi.org/10.1029/2009JF001418.
Venditti, J. G., W. E. Dietrich, P. A. Nelson, M. A. Wydzga, J. Fadde, and L. Sklar. 2010b. “Mobilization of coarse surface layers in gravel-bedded rivers by finer gravel bed load.” Water Resour. Res. 46 (7): 1–10. https://doi.org/10.1029/2009WR008329.
Viparelli, E., A. Blom, C. Ferrer-Boix, and R. Kuprenas. 2014. “Comparison between experimental and numerical stratigraphy emplaced by a prograding delta.” Earth Surf. Dyn. 2 (1): 323–338. https://doi.org/10.5194/esurf-2-323-2014.
Ward, J. V., and J. A. Stanford. 1995. “Ecological connectivity in alluvial river ecosystems and its disruption by flow regulation.” Regul. Rivers: Res. Manage. 11 (1): 105–119. https://doi.org/10.1002/rrr.3450110109.
Weichert, R. B., A. Wahrheit-Lensing, R. M. Frings, M. Promny, and S. Vollmer. 2010. “Morphological characteristics of the river Rhine between Iffezheim and Bingen.” In Proc., Int. Conf. Fluvial Hydraulics, 1077–1083. Karlsruhe, Germany: Bundesanstalt für Wasserbau.
Wilcock, P. R., and J. C. Crowe. 2003. “Surface-based transport model for mixed-size sediment.” J. Hydraul. Eng. 129 (2): 120–128. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:2(120).
Wong, M., and G. Parker. 2006. “Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database.” J. Hydraul. Eng. 132 (11): 1159–1168. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:11(1159).
Ylla Arbós, C., A. Blom, E. Viparelli, M. Reneerkens, R. M. Frings, and R. M. J. Schielen. 2021. “River response to anthropogenic modification: Channel steepening and gravel front fading in an incising river.” Geophys. Res. Lett. 48 (4): e2020GL091338. https://doi.org/10.1029/2020GL091338.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 148Issue 6June 2022

History

Received: Jun 14, 2021
Accepted: Jan 18, 2022
Published online: Apr 4, 2022
Published in print: Jun 1, 2022
Discussion open until: Sep 4, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Dept. of Hydraulic Engineering, Delft Univ. of Technology, Delft 2628CN, Netherlands (corresponding author). ORCID: https://orcid.org/0000-0002-2392-8923. Email: [email protected]
Astrid Blom, Ph.D.
Associate Professor, Dept. of Hydraulic Engineering, Delft Univ. of Technology, Delft 2628CN, Netherlands.
Enrica Viparelli, Ph.D., M.ASCE https://orcid.org/0000-0001-6733-9664
Associate Professor, Dept. of Civil Engineering, Univ. of South Carolina, Columbia, SC 29208. ORCID: https://orcid.org/0000-0001-6733-9664

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Scour at River-Crossing Cylindrical Structures in Degrading Channels, Journal of Hydraulic Engineering, 10.1061/JHEND8.HYENG-13389, 149, 3, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share