Abstract

Hydraulic jumps, frequently present in energy dissipation structures, have been thoroughly investigated over the past 70  years. However, studies have focused primarily on the more common and more stable cases of large Froude number jumps. Investigations on low Froude number jumps, usually called transition jumps, are scarce, although they are used in a significant number of run-of-the-river, high-discharge, and low-head dams. This paper addresses the characterization of hydrodynamic pressures of low Froude number jumps. A two-dimensional experimental facility was used for that purpose. Results were compared with those from published studies covering transition jumps and stabilized jumps, to identify differences and similarities between them. The analysis considered common dimensionless statistical parameters, duly nondimensionalized. It was found that, for most of these parameters, low Froude number jumps behave differently from stabilized jumps. This can be attributed mainly to the hydraulic jump’s oscillating jet formed under the surface macroturbulent roller, as well as to the partially developed boundary layer of the incoming flow in low-head spillways.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request (all novel experimental data presented in charts).
Some or all data, models, or code used during the study were provided by a third party. Direct requests for these materials may be made to the provider as indicated in the Acknowledgments (data previously published in the literature).

Acknowledgments

The first author gratefully acknowledges CNPq, for funding during the Master Program. The authors also thank Dr. Endres, Mr. Souza, and Mrs. Hampe for sharing their data on pressures acting on stilling basins, as well as CAPES, Furnas Centrais Elétricas S.A., Foz do Chapecó Energia S.A., and IPH-UFRGS for their support.

References

Abdul Khader, M. H., and K. Elango. 1974. “Turbulent pressure field beneath a hydraulic jump.” J. Hydraul. Res. 12 (4): 469–489. https://doi.org/10.1080/00221687409499725.
Bélanger, J. B. 1828. Essai sur la solution numérique de quelques problèmes relatifs au mouvement permanent des eaux courantes. Paris: Carilian-Goeury.
Bidone, G. 1820. Expériences sur le remou et sur la propagation des ondes. Turin, Italy: Accademia delle Scienze di Torino.
Chanson, H., and C. Gualtieri. 2008. “Similitude and scale effects of air entrainment in hydraulic jumps.” J. Hydraul. Res. 46 (1): 35–44. https://doi.org/10.1080/00221686.2008.9521841.
Chow, V. T. 1959. Open channel hydraulics. New York: McGraw-Hill.
Dai Prá, M. 2011. “Uma abordagem para determinação das pressões junto ao fundo de dissipadores de energia por ressalto hidráulico.” Ph.D. thesis, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul.
Elevatorski, E. A. 1959. Hydraulic energy dissipators. New York: McGraw-Hill.
Endres, L. A. M. 1990. “Contribuição ao desenvolvimento de um sistema para aquisição e tratamento de dados de pressões instantâneas em laboratório.” M.Sc. dissertation, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul.
EPE (Empresa de Pesquisa Energética). 2018. “Considerações sobre a Expansão Hidrelétrica nos Estudos de Planejamento Energético de Longo Prazo: Documento de Apoio ao PNE 2050.” Accessed March 19, 2020. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-227/topico-457/Considera%C3%A7%C3%B5es%20sobre%20a%20Expans%C3%A3o%20Hidrel%C3%A9trica%20nos%20Estudos%20de%20Planejamento%20Energ%C3%A9tico%20de%20Longo%20Prazo.pdf.
EPE (Empresa de Pesquisa Energética). 2019. “Plano Decenal de Expansão de Energia 2029.” Accessed March 19, 2020. http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/Documents/PDE%202029.pdf.
Fiorotto, V., and E. Caroni. 2014. “Unsteady seepage applied to lining design in stilling basins.” J. Hydraul. Eng. 140 (7): 04014025. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000867.
Fiorotto, V., and A. Rinaldo. 1992. “Fluctuating uplift and lining design in spillway stilling basins.” J. Hydraul. Eng. 118 (4): 578–596. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:4(578).
Fiorotto, V., and P. Salandin. 2000. “Design of anchored slabs in spillway stilling basins.” J. Hydraul. Eng. 126 (7): 502–512. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:7(502).
Hager, W. H. 1992. Energy dissipators and hydraulic jump. Berlin: Springer.
Hampe, R. F. 2018. “Previsão de pressões extremas em bacias de dissipação por ressalto hidráulico com baixo número de Froude.” M.Sc. dissertation, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul.
King, D. L. 1967. “Analysis of random pressure fluctuations in stilling basins.” In Vol. 2 of Proc., 12th Cong. of IAHR. Madrid: International Association of Hydraulic Engineering and Research.
Kobus, H. 1980. Hydraulic modelling. Berlin: Paul Parey.
Latrubesse, E. M., et al. 2017. “Damming the rivers of the Amazon basin.” Nature 546 (7658): 363–369. https://doi.org/10.1038/nature22333.
Lopardo, R. A. 2002. “Contribution of hydraulic models to the safe design of large dam stilling basins.” In Proc., IAHR Symp. on Hydraulic and Hydrological Aspects of Reliability and Safety Assessment of Hydraulic Structures. Madrid: International Association of Hydraulic Engineering and Research.
Lopardo, R. A. 2003. “Cavitación en flujos macroturbulentos.” Matematicae Notae 2: 19–40.
Lopardo, R. A., G. F. Vernet, and R. E. Henning. 1984. “Correlación de presiones instantáneas inducidas por un resalto hidráulico libre y estable.” In Proc., XI Congreso Latinoamericano de Hidraulica. Madrid: International Association of Hydraulic Engineering and Research.
Marques, M. G. 1995. “Nouvelle approche pour le dimensionnement des dissipateurs à auge.” Ph.D. thesis, Departement de Génie Civil, Université Laval.
Marques, M. G., F. M. Almeida, and L. A. M. Endres. 1999. “Adimensionalização de pressões médias em bacias de dissipação por ressalto hidráulico.” In Proc., 13th Brazilian Symp. on Water Resources. Rio de Janeiro: Associação Brasileira de Recursos Hídricos.
Marques, M. G., J. Drapeau, and J. L. Verrette. 1997. “Flutuação de Pressão em um Ressalto Hidráulico.” Revista Brasileira de Recursos Hídricos 2 (2): 45–52. https://doi.org/10.21168/rbrh.v2n2.p45-52.
Marques, M. G., R. F. Hampe, P. E. Souza, and E. D. Teixeira. 2017. “Previsão de pressões extremas mínimas em bacia de dissipação com baixo número de Froude.” In Proc., 31st National Seminar on Large Dams. Belo Horizonte, Brazil: Comitê Brasileiro de Barragens.
McCorquodale, J. A., and A. Khalifa. 1983. “Internal flow in hydraulic jumps.” J. Hydraul. Eng. 109 (5): 684–701. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:5(684).
McPherson, B. L., E. J. Lesleighter, D. C. Scriven, and E. F. R. Bollaert. 2015. “Physical and computational scour modelling system analysis—Case study for Paradise Dam, Queensland.” In Proc., ANCOLD Annual Conf. 2015. Hobart, Australia: Australian National Committee on Large Dams.
Ohtsu, I., and Y. Yasuda. 1991. “Hydraulic jump in sloping channels.” J. Hydraul. Eng. 117 (7): 905–921. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:7(905).
Peterka, A. J. 1984. Hydraulic design of stilling basins and energy dissipators. Denver: United States Bureau of Reclamation.
Pinheiro, A. N. 1995. “Acções hidrodinâmicas em soleiras de bacia de dissipação de energia por ressalto hidráulico.” Ph.D. thesis, Dept. of Civil Engineering, Architecture and Georesources, Universidade Técnica de Lisboa.
Rajaratnam, N. 1962. “An experimental study of the air entrainment characteristics of hydraulic jump.” J. Inst. Eng. India 42 (7): 247–273.
Rajaratnam, N. 1965. “The hydraulic jump as a wall jet.” J. Hydraulics Div. 91 (5): 107–132.
Rajaratnam, N. 1967. “Hydraulic jumps.” In Advances in hydroscience, 197–280. New York: Elsevier.
Resch, F. J., and H. J. Leutheusser. 1971. “Mesures de turbulence dans le ressaut hydraulique.” La Houille Blanche Jan (1): 17–31. https://doi.org/10.1051/lhb/1971001.
Resch, F. J., H. J. Leutheusser, and S. Alemu. 1974. “Bubbly two-phase flow in hydraulic jump.” J. Hydraulics Div. 100 (1): 137–149.
Souza, P. E. 2012. “Bacias de dissipação por ressalto hidráulico com baixo número de Froude—Análise das pressões junto ao fundo da estrutura.” M.Sc. dissertation, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul.
Spiegel, M. R., and L. J. Stephens. 2018. Statistics. New York: McGraw-Hill.
Stojnic, I. 2020. “Stilling basin performance downstream of stepped spillways.” Ph.D. thesis, Faculté de l’environnement naturel, architectural et construit, École polytechnique fédérale de Lausanne.
Teixeira, E. D. 2003. “Previsão dos valores de pressão junto ao fundo em bacias de dissipação por ressalto hidráulico.” M.Sc. dissertation, Institute of Hydraulic Research, Universidade Federal do Rio Grande do Sul.
Toso, J. W., and E. Bowers. 1988. “Extreme pressures in hydraulic-jump stilling basins.” J. Hydraul. Eng. 114 (8): 829–843. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:8(829).
Vasiliev, O. F., and V. I. Bukreyev. 1967. “Statistical characteristics of pressure fluctuations in the region of hydraulic jump.” In Vol. 2 of Proc., 12th Congress of IAHR. Fort Collins, CO: International Association of Hydraulic Engineering and Research.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 147Issue 4April 2021

History

Received: Jun 1, 2020
Accepted: Oct 22, 2020
Published online: Jan 30, 2021
Published in print: Apr 1, 2021
Discussion open until: Jun 30, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Research Assistant, Laboratório de Obras Hidráulicas, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil (corresponding author). ORCID: https://orcid.org/0000-0002-7311-3028. Email: [email protected]
Professor, Laboratório de Obras Hidráulicas, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil. ORCID: https://orcid.org/0000-0002-1858-1531. Email: [email protected]
R. A. Lopardo, Ph.D. [email protected]
Associate Researcher, Instituto Nacional del Agua, Au. Ezeiza-Cañuelas, tramo Jorge Newbery Km 1,620, Ezeiza, Buenos Aires B1804, Argentina. Email: [email protected]
M. G. Marques, Ph.D. [email protected]
Professor, Laboratório de Obras Hidráulicas, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil. Email: [email protected]
J. F. de Melo, Ph.D. [email protected]
Senior Researcher, Laboratório Nacional de Engenharia Civil, Avenida do Brasil, 101, Lisboa 1700-075, Portugal. Email: [email protected]
P. S. Priebe, Ph.D. [email protected]
Research Associate, Laboratório de Obras Hidráulicas, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil. Email: [email protected]
E. D. Teixeira, Ph.D. [email protected]
Professor, Laboratório de Obras Hidráulicas, Instituto de Pesquisas Hidráulicas, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Porto Alegre 91501-970, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share