Abstract

Plastic/viscoelastic pipes such as polyvinyl chloride (PVC), polyethylene (PE), and high-density polyethylene (HDPE) pipes have been increasingly applied in fluid piping systems. The understanding of the hydrodynamic behavior and features of such pipe materials are important in their practical applications. This paper develops an effective frequency-domain transient-based method (FDTBM) for the efficient and accurate identification of viscoelastic parameters of plastic pipes. The analytical expression of transient frequency response in a typical viscoelastic pipeline system is first derived to describe the dependence relationship among different factors and coefficients in the system (e.g., pipe and fluid properties). The obtained result is then applied to inversely identify the viscoelastic parameters of plastic pipes under different flow and operational conditions. A multistage analysis framework is proposed to enhance the robustness and effectiveness of the proposed FDTBM to obtain accurate and unique solutions of viscoelastic parameters for the plastic pipes used in this study. The proposed method and analysis framework have been validated and evaluated through various experimental tests and numerical simulations.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request (including analytical, numerical, and experimental test data).

Acknowledgments

This research work was supported by the Hong Kong Research Grants Council (RGC) under projects Nos. 25200616, 15201017, and T21-602/15R. In addition, support from Italian MIUR and the University of Perugia is acknowledged for the program “Dipartimenti di Eccellenza 2018-2022”.

References

Ayati, A. H., A. Haghighi, and P. J. Lee. 2019. “Statistical review of major standpoints in hydraulic transient-based leak detection” J. Hydraul. Struct. 5 (1): 1–26. https://doi.org/10.22055/JHS.2019.27926.1095.
Bergant, A., A. S. Tijsseling, J. P. Vítkovský, D. Covas, A. R. Simpson, and M. F. Lambert. 2008a. “Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools” J. Hydraul. Res. 46 (3): 373–381. https://doi.org/10.3826/jhr.2008.2848.
Bergant, A., A. S. Tijsseling, J. P. Vítkovský, D. Covas, A. R. Simpson, and M. F. Lambert. 2008b. “Parameters affecting water-hammer wave attenuation, shape and timing—Part 2: Case studies.” J. Hydraul. Res. 46 (3): 382–391. https://doi.org/10.3826/jhr.2008.2847.
Brunone, B., and A. Berni. 2010. “Wall shear stress in transient turbulent pipe flow by local velocity measurement.” J. Hydraul. Eng. 136 (10): 716–726. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000234.
Brunone, B., and U. M. Golia. 2008. “Discussion of ‘Systematic evaluation of one-dimensional unsteady friction models in simple pipelines’ by J. P. Vítkovský, A. Bergant, A. R. Simpson, and M. F. Lambert.” J. Hydraul. Eng. 134 (2): 282–284. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:2(282.
Brunone, B., S. Meniconi, and C. Capponi. 2019. “Numerical analysis of the transient pressure damping in a single polymeric pipe with a leak.” Urban Water J. 15 (8): 760–768. https://doi.org/10.1080/1573062X.2018.1547772.
Chaudhry, M. H. 2014. Applied hydraulic transients. New York: Springer.
Cochran, W. T., J. W. Cooley, D. L. Favin, H. D. Helms, R. A. Kaenel, W. W. Lang, G. C. Maling, D. E. Nelson, C. M. Rader, and P. D. Welch. 1967. “What is the fast Fourier transform?” Proc. IEEE 55 (10): 1664–1674. https://doi.org/10.1109/PROC.1967.5957.
Collins, R. P., J. B. Boxall, B. W. Karney, B. Brunone, and S. Meniconi. 2012. “How severe can transients be after a sudden depressurization?” J. Am. Water Works Assn. 104 (4): E243–E251. https://doi.org/10.5942/jawwa.2012.104.0055.
Colombo, A. F., P. Lee, and B. W. Karney. 2009. “A selective literature review of transient-based leak detection methods.” J. Hydro-Environ. Res. 2 (4): 212–227. https://doi.org/10.1016/j.jher.2009.02.003.
Covas, D., and H. Ramos. 2001. “Hydraulic transients used for leakage detection in water distribution systems.” In Proc., 4th Int. Conf. on Water Pipe Systems, 227–241. New York: BHR Group.
Covas, D., and H. Ramos. 2010. “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plan. Manage. 136 (2): 248–257. https://doi.org/10.1061/(ASCE)0733-9496(2010)136:2(248).
Covas, D., H. Ramos, and A. B. Almeida. 2005a. “Standing wave difference method for leak detection in pipeline systems.” J. Hydraul. Eng. 131 (12): 1106–1116. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:12(1106).
Covas, D., I. Stoianov, J. F. Mano, H. Ramos, N. Graham, and C. Maksimovic. 2005b. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II: Model development, calibration and verification.” J. Hydraul. Res. 43 (1): 56–70. https://doi.org/10.1080/00221680509500111.
Covas, D., I. Stoianov, H. Ramos, N. Graham, and C. Maksimovic. 2004. “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—Experimental analysis and creep characterization.” J. Hydraul. Res. 42 (5): 517–532. https://doi.org/10.1080/00221686.2004.9641221.
Duan, H. F. 2016. “Sensitivity analysis of a transient-based frequency domain method for extended blockage detection in water pipeline systems.” J. Water Resour. Plann. Manage. 142 (4): 04015073. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000625.
Duan, H. F., T.-C. Che, P. J. Lee, and M. S. Ghidaoui. 2018. “Influence of nonlinear turbulent friction on the system frequency response in transient pipe flow modelling and analysis.” J. Hydraul. Res. 56 (4): 451–463. https://doi.org/10.1080/00221686.2017.1399936.
Duan, H. F., M. S. Ghidaoui, P. J. Lee, and Y. K. Tung. 2012a. “Relevance of unsteady friction to pipe size and length in pipe fluid transients.” J. Hydraul. Eng. 138 (2): 154–166. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000497.
Duan, H. F., M. S. Ghidaoui, P. J. Lee, and Y.-K. Tung. 2010a. “Unsteady friction and visco-elasticity in pipe fluid transients.” J. Hydraul. Res. 48 (3): 354–362. https://doi.org/10.1080/00221681003726247.
Duan, H. F., M. S. Ghidaoui, and Y.-K. Tung. 2010b. “Energy analysis of viscoelasticity effect in pipe fluid transients.” J. Appl. Mech. 77 (4): 044503. https://doi.org/10.1115/1.4000915.
Duan, H. F., and P. J. Lee. 2016. “Transient-based frequency domain method for dead-end side branch detection in reservoir pipeline-valve systems.” J. Hydraul. Eng. 142 (2): 04015042. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001070.
Duan, H. F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2010c. “Essential system response information for transient-based leak detection methods.” J. Hydraul. Res. 48 (5): 650–657. https://doi.org/10.1080/00221686.2010.507014.
Duan, H. F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2012b. “Extended blockage detection in pipelines by using the system frequency response analysis.” J. Water Resour. Plan. Manage. 138 (1): 55–62. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000145.
Duan, H. F., P. J. Lee, M. S. Ghidaoui, and Y.-K. Tung. 2012c. “System response function–based leak detection in viscoelastic pipelines.” J. Hydraul. Eng. 138 (2): 143–153. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000495.
Duan, H. F., Y. K. Tung, and M. S. Ghidaoui. 2010d. “Probabilistic analysis of transient design for water supply systems.” J. Water Resour. Plann. Manage. 136 (6): 678–687. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000074.
Folkman, S. 2018. Water main break rates in the USA and Canada: A comprehensive study. Logan, UT: Mechanical and Aerospace Engineering Faculty Publications.
Gally, M., M. Güney, and E. Rieutord. 1979. “An investigation of pressure transients in viscoelastic pipes.” J. Fluids Eng. 101 (4): 495–499. https://doi.org/10.1115/1.3449017.
Ghidaoui, M. S., M. Zhao, D. A. McInnis, and D. H. Axworthy. 2005. “A review of water hammer theory and practice.” Appl. Mech. Rev. 58 (1): 49–76. https://doi.org/10.1115/1.1828050.
Gong, J., M. F. Lambert, A. R. Simpson, and A. C. Zecchin. 2013. “Single-event leak detection in pipeline using first three resonant responses.” J. Hydraul. Eng. 139 (6): 645–655. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000720.
Gong, J., A. C. Zecchin, M. F. Lambert, and A. R. Simpson. 2016. “Determination of the creep function of viscoelastic pipelines using system resonant frequencies with hydraulic transient analysis.” J. Hydraul. Eng. 142 (9): 04016023. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001149.
Güney, M. S. 1983. “Waterhammer in viscoelastic pipes where cross-section parameters are time dependent.” In Proc., 4th Int. Conf. on Pressure surges, 189–204. Cranfield, UK: BHR Group.
HK-WSD (Water Supplies Department of the Hong Kong Government). 2018. “Technical specifications on grey water reuse and rainwater harvesting.” Accessed May 1, 2018. https://www.wsd.gov.hk/filemanager/en/content_1459/technical_spec_grey_water_reuse_rainwater_harvest.pdf.
Keramat, A., and A. Haghighi. 2014. “Straightforward transient-based approach for the creep function determination in viscoelastic pipes.” J. Hydraul. Eng. 140 (12): 04014058. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000929.
Lee, P. J., M. F. Lambert, A. R. Simpson, J. P. Vítkovský, and J. Liggett. 2006. “Experimental verification of the frequency response method for pipeline leak detection.” J. Hydraul. Res. 44 (5): 693–707. https://doi.org/10.1080/00221686.2006.9521718.
Lee, P. J., J. P. Vítkovský, M. F. Lambert, A. R. Simpson, and J. Liggett. 2007. “Leak location in pipelines using the impulse response function.” J. Hydraul. Res. 45 (5): 643–652. https://doi.org/10.1080/00221686.2007.9521800.
Meniconi, S., B. Brunone, and M. Ferrante. 2012a. “Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes.” J. Fluids Struct. 33 (Aug): 44–58. https://doi.org/10.1016/j.jfluidstructs.2012.05.007.
Meniconi, S., B. Brunone, M. Ferrante, C. Capponi, C. A. Carrettini, C. Chiesa, D. Segalini, and E. A. Lanfranchi. 2015. “Anomaly pre-localization in distribution-transmission mains. Preliminary field tests in the Milan pipe system.” J. Hydroinform. 17 (3): 377–389. https://doi.org/10.2166/hydro.2014.038.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2011a. “Potential of transient tests to diagnose real supply pipe systems: What can be done with a single extemporary test.” J. Water Resour. Plan. Manage. 137 (2): 238–241. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000098.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2011b. “Transient tests for locating and sizing illegal branches in pipe systems.” J. Hydroinform. 13 (3): 334–345. https://doi.org/10.2166/hydro.2011.012.
Meniconi, S., B. Brunone, M. Ferrante, and C. Massari. 2012b. “Transient hydrodynamics of in-line valves in viscoelastic pressurized pipes: Long-period analysis.” Exp. Fluids 53 (1): 265–275. https://doi.org/10.1007/s00348-012-1287-3.
Meniconi, S., B. Brunone, and M. Frisinghelli. 2018. “On the role of minor branches, energy dissipation, and small defects in the transient response of transmission mains.” Water 10 (2): 187. https://doi.org/10.3390/w10020187.
Meniconi, S., H. F. Duan, B. Brunone, M. S. Ghidaoui, P. J. Lee, and M. Ferrante. 2014. “Further developments in rapidly decelerating turbulent pipe flow modeling.” J. Hydraul. Eng. 140 (7): 04014028. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000880.
Mitosek, M., and M. Chorzelski. 2003. “Influence of visco-elasticity on pressure wave velocity in polyethylene MDPE pipe.” Arch. Hydro-Eng. Environ. Mech. 50 (2): 127–140.
Pezzinga, G., B. Brunone, and S. Meniconi. 2016. “Relevance of pipe period on Kelvin-Voigt viscoelastic parameters: 1D and 2D inverse transient analysis.” J. Hydraul. Eng. 142 (12): 04016063. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001216.
Ramos, H., D. Covas, A. Borga, and D. Loureiro. 2004. “Surge damping analysis in pipe systems: Modelling and experiments.” J. Hydraul. Res. 42 (4): 413–425. https://doi.org/10.1080/00221686.2004.9728407.
Rieutord, E. 1982. “Transient response of fluid viscoelastic lines.” J. Fluids Eng. 104 (3): 335–341. https://doi.org/10.1115/1.3241845.
Rieutord, E., and A. Blanchard. 1972. “Influence d’un comportement viscoelastique de la conduite dans le phenomene du coup de belier.” C. R. Acad. Sc. 274 (1): 1963–1966.
Rieutord, E., and A. Blanchard. 1979. “Pulsating viscoelastic pipe flow-water-hammer.” J. Hydraul. Res. 17 (3): 217–229. https://doi.org/10.1080/00221687909499585.
Soares, A. K., D. I. C. Covas, and L. F. R. Reis. 2008. “Analysis of PVC pipe-wall viscoelasticity during water hammer.” J. Hydraul. Eng. 134 (9)1389–1394. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:9(1389).
Soares, A. K., D. I. C. Covas, and L. F. R. Reis. 2010. “Leak detection by inverse transient analysis in an experimental PVC pipe system.” J. Hydroinform. 13 (2): 153–166. https://doi.org/10.2166/hydro.2010.012.
Tang, S. L. 2000. “Dual water supply in Hong Kong.” In Proc., 26th WEDC Conf. on Water, Sanitation and Hygiene—Challenges of the Millennium. Loughborough, UK: WEDC, Loughborough Univ. of Technology.
Trikha, A. K. 1975. “An efficient method for simulating frequency-dependent friction in transient liquid flow.” J. Fluids Eng. 97 (1): 97–105. https://doi.org/10.1115/1.3447224.
Urbanowicz, K., and M. Firkowski. 2018. “Effect of creep compliance derivative in modelling water hammer in viscoelastic pipes.” In Proc., 13th Int. Conf. on Pressure Surges, 305–324. Bordeaux, France: BHR Group.
Urbanowicz, K., M. Firkowski, and Z. Zarzycki. 2016. “Modelling water hammer in viscoelastic pipelines: Short brief.” J. Phys. Conf. Ser. 760 (1): 012037. https://doi.org/10.1088/1742-6596/760/1/012037.
Vardy, A. E., and J. M. B. Brown. 1995. “Transient, turbulent, smooth pipe friction.” J. Hydraul. Res. 33 (4): 435–456. https://doi.org/10.1080/00221689509498654.
Wineman, A. S., and K. R. Rajagopal. 2000. Mechanical response of polymers: An introduction. New York: Cambridge University Press.
Wylie, E. B., V. L. Streeter, and L. Suo. 1993. Fluid transients in systems. Englewood Cliffs, NJ: Prentice Hall.
Xu, X., and B. Karney. 2017. “An overview of transient fault detection techniques.” In Modeling and monitoring of pipelines and networks, edited by C. Verde and L. Torres, 13–37. Cham, Switzerland: Springer.
Zanganeh, R., A. Ahmadi, and A. Keramat. 2015. “Fluid–structure interaction with viscoelastic supports during waterhammer in a pipeline.” J. Fluids Struct. 54 (Apr): 215–234. https://doi.org/10.1016/j.jfluidstructs.2014.10.016.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 146Issue 3March 2020

History

Received: Jan 14, 2019
Accepted: Aug 2, 2019
Published online: Dec 19, 2019
Published in print: Mar 1, 2020
Discussion open until: May 19, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil and Environment Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, Hong Kong SAR 999077, PR China. Email: [email protected]
Associate Professor, Dept. of Civil and Environment Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, Hong Kong SAR 999077, PR China (corresponding author). ORCID: https://orcid.org/0000-0002-9200-904X. Email: [email protected]
S. Meniconi [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Perugia, G. Duranti 93, 06125 Perugia, Italy. Email: [email protected]
K. Urbanowicz [email protected]
Assistant Professor, Dept. of Mechanical Engineering and Mechatronics, West Pomeranian Univ. of Technology Szczecin, Piastów 19, 70-310 Szczecin, Poland. Email: [email protected]
Ph.D. Candidate, Dept. of Civil and Environment Engineering, Hong Kong Polytechnic Univ., Hung Hom, Kowloon, Hong Kong SAR 999077, PR China. ORCID: https://orcid.org/0000-0003-1024-188X. Email: [email protected]
B. Brunone, M.ASCE [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Perugia, G. Duranti 93, 06125 Perugia, Italy. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share