Technical Papers
Sep 21, 2017

CFD and 1D Approaches for the Unsteady Friction Analysis of Low Reynolds Number Turbulent Flows

Publication: Journal of Hydraulic Engineering
Volume 143, Issue 12

Abstract

The aim of this paper is to investigate the complex nature of the transient energy dissipation by using a computational fluid dynamics (CFD) model with a high spatial and temporal resolution together with one-dimensional (1D) models incorporating different unsteady friction (UF) formulations. The analysis focuses on a transient event in a single pipe system with a smooth-wall turbulent flow (with an initial Reynolds number equal to 7,638) generated by an instantaneous valve closure. For the considered flow condition, the numerical experiments point out the importance of the used UF model with regard to the wall shear stress simulation. In such a context, it is shown that the convolution-based UF models better describe the pressure signal than the instantaneous acceleration–based ones because they take into account a set of previous time steps. This is due to the fact that, similarly to the laminar regime, to simulate the characteristics of low turbulent transients the flow time history plays a crucial role.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is jointly funded by the Civil Engineering Research and Innovation for Sustainability (CERIS) Research Center from Instituto Superior Técnico, the University of Perugia, Fondazione Cassa di Risparmio di Perugia (Project Number 2017.0234.021), and the Hong Kong (HK) Research Grant Council Theme-based Research Scheme and the HK University of Science and Technology (HKUST) under the Project “Smart Urban Water Supply System (Smart UWSS).”

References

Adamkowski, A., and Lewandowski, M. (2006). “Experimental examination of unsteady friction models for transient pipe flow simulation.” ASME J. Fluids Eng., 128(6), 1351–1363.
Almeida, A. B., and Koelle, E. (1992). Fluid transients in pipe networks, Elsevier Applied Science, London.
Anderson, W. K., Newman, J. C., Whitfield, D. L., and Nielsen, E. J. (2001). “Sensitivity analysis for Navier–Stokes equations on unstructured meshes using complex variables.” AIAA J., 39(1), 56–63.
ANSYS [Computer software]. ANSYS, Inc., Canonsburg, PA.
Arbon, N. S., et al. (2008). “Field validation of transient analysis for in-line valve condition assessment.” Proc., 10th Int. Conf. on Pressure Surges, BHR Group Limited, London, 169–179.
Bergant, A., and Simpson, A. R. (1994). “Estimating unsteady friction in transient cavitating pipe flow.” Proc., 2nd Int. Conf. on Water Pipelines Systems, BHR Group Limited, London, 3–16.
Bergant, A., Simpson, A. R., and Vitkovsky, J. (2001). “Developments in unsteady pipe flow friction modelling.” J. Hydraul. Res., 39(3), 249–257.
Bratland, O. (1986). “Frequency-dependent friction and radial kinetic energy variation in transient pipe flow.” Proc., 5th Int. Conf. on Pressure Surges, BHR Group Limited, London, 95–101.
Brunone, B., and Berni, A. (2010). “Wall shear stress in transient turbulent pipe flow by local velocity measurement.” J. Hydraul. Eng., 716–726.
Brunone, B., Ferrante, M., and Cacciamani, M. (2004). “Decay of pressure and energy dissipation in laminar transient flow.” ASME J. Fluids Eng., 126(6), 928–934.
Brunone, B., Ferrante, M., and Meniconi, S. (2008). “Discussion of ‘Detection of partial blockage in single pipelines’ by P. K. Mohapatra, M. H. Chaudhry, A. A. Kassem, and J. Moloo.” J. Hydraul. Eng., 872–874.
Brunone, B., and Golia, U. M. (2008). “Discussion of ‘Systematic evaluation of one-dimensional unsteady friction models in simple pipelines’ by J. P. Vitkovsky, A. Bergant, A. R. Simpson, and M. F. Lambert.” J. Hydraul. Eng., 282–284.
Brunone, B., Golia, U. M., and Greco, M. (1991). “Some remarks on the momentum equation for fast transient.” Proc., Int. Meeting on Hydraulic Transients and Water Column Separation, International Association for Hydraulic Research, Madrid, Spain, 201–209.
Brunone, B., Golia, U. M., and Greco, M. (1995). “Effects of two-dimensionality on pipe transients modeling.” J. Hydraul. Eng., 906–912.
Brunone, B., Karney, B. W., Mecarelli, M., and Ferrante, M. (2000). “Velocity profiles and unsteady pipe friction in transient flow.” J. Water Resour. Plann. Manage., 236–244.
Brunone, B., and Morelli, L. (1999). “Automatic control valve-induced transients in operative pipe system.” J. Hydraul. Eng., 534–542.
Budny, D. D., Wiggert, D. C., and Hatfield, F. J. (1991). “The influence of structural damping on internal-pressure during a transient pipe-flow.” J. Fluids Eng., 113(3), 424–429.
Carstens, M. R., and Roller, J. E. (1959). “Boundary-shear stress in unsteady turbulent pipe flow.” J. Hydraul. Div., 85(2), 67–81.
Chaudhry, M. H. (2014). Applied hydraulic transients, Springer, New York.
Covas, D. I. C. (2003). “Inverse transient analysis for leak detection and calibration of water pipe systems modelling special dynamic effects.” Ph.D. thesis, Imperial College, London.
Covas, D. I. C., and Ramos, H. M. (2010). “Case studies of leak detection and location in water pipe systems by inverse transient analysis.” J. Water Resour. Plann. Manage., 248–257.
Covas, D. I. C., Ramos, H. M., and Betâmio de Almeida, A. (2005). “Standing wave difference method for leak detection in pipeline systems.” J. Hydraul. Eng., 1106–1116.
Covas, D. I. C., Ramos, H. M., Stoianov, I., Graham, N., and Maksimovic, C. (2003). “Dissipation of pressure surges in water pipeline systems.” Proc., Pumps, Electromechanical Devices and Systems Applied to Urban Water Management, A.A. Balkema, Lisse, Netherlands, 711–719.
Daily, J. W., Hankey, W. L., Olive, R. W., and Jordaan, J. M. (1956). “Resistance coefficients for accelerated and decelerated flows through smooth tubes and orifices.” Trans. Am. Soc. Mech. Eng., 78, 1071–1077.
Das, D., and Arakeri, J. (1998). “Transition of unsteady velocity profiles with reverse flow.” J. Fluid Mech., 374, 251–283.
Ding, H., Visser, F. C., Jiang, Y., and Furmanczyk, M. (2011). “Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial applications.” J. Fluid Mech., 133(1), 1–14.
Duan, H. F., Ghidaoui, M. S., Lee, P. J., and Tung, Y. K. (2012). “Relevance of unsteady friction to pipe size and length in pipe fluid transients.” J. Hydraul. Eng., 154–166.
Duan, H. F., Lee, P. J., Ghidaoui, M. S., and Tuck, J. (2014). “Transient wave-blockage interaction and extended blockage detection in elastic water pipelines.” J. Fluid Struct., 46, 2–16.
Duan, H. F., Lee, P. J., Ghidaoui, M. S., and Tung, Y. K. (2011). “Leak detection in complex series pipelines by using the system frequency response method.” J. Hydraul. Res., 49(2), 213–221.
Ferrante, M., Brunone, B., Meniconi, S., Karney, B. W., and Massari, C. (2014). “Leak size, detectability and test conditions in pressurized pipe systems.” Water Resour. Manage., 28(13), 4583–4598.
Ghidaoui, M. S., Mansour, S. G. S., and Zhao, M. (2002). “Applicability of quasisteady and axisymmetric turbulence models in water hammer.” J. Hydraul. Eng., 917–924.
Golia, U. M., and Carravetta, A. (1994). “Discussion of ‘A weighting function model of transient turbulent pipe friction’ by A. E. Vardy and Hwang Kuo-Lun.” J. Hydraul. Res., 32(4), 639–640.
Hino, M., Sawamoto, M., and Takasu, S. (1976). “Experiments on transition to turbulence in an oscillatory pipe flow.” J. Fluid Mech., 75(2), 193–207.
Hino, M., Sawamoto, M., and Takasu, S. (1977). “Study on the transition to turbulence and frictional coefficient in an oscillatory pipe flow.” Trans. JSCE, 9, 282–285.
Kim, Y.-I., Simpson, A. R., and Lambert, M. F. (2005). “Unsteady friction models for conservative solution schemes in transient pipe flows.” Proc., Conf. on Computing and Control for the Water Industry (CCWI), Univ. of Exeter, Centre for Water Systems, Exeter, U.K., 275–280.
Launder, B. E., and Sharma, B. I. (1974). “Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc.” Lett. Heat Mass Transfer, 1(2), 131–137.
Lee, P. J., Vitkovský, J. P., Lambert, M. F., Simpson, A. R., and Liggett, J. A. (2005). “Leak location using the pattern of the frequency response diagram in pipelines: A numerical study.” J. Sound Vib., 284(3–5), 1051–1073.
Martins, N. M. C., Brunone, B., Meniconi, S., Ramos, H. M., and Covas, D. (2017). “Efficient CFD model for transient laminar flow modeling: Pressure wave propagation and velocity profile changes.” J. Fluids Eng., in press.
Martins, N. M. C., Carriço, N. J. G., Ramos, H. M., and Covas, D. I. C. (2014). “Velocity-distribution in pressurized pipe flow using CFD: Accuracy and mesh analysis.” Comput. Fluids, 105, 218–230.
Martins, N. M. C., Soares, A. K., Ramos, H. M., and Covas, D. I. C. (2016). “CFD modeling of transient flow in pressurized pipes.” Comput. Fluids, 126, 129–140.
Meniconi, S., et al. (2015). “Anomaly pre-localization in distribution-transmission mains by pump trip: preliminary field tests in the Milan pipe system.” J. Hydroinf., 17(3), 377–389.
Meniconi, S., Brunone, B., Ferrante, M., and Massari, C. (2011a). “Potential of transient tests to diagnose real supply pipe systems: What can be done with a single extemporary test.” J. Water Resour. Plann. Manage., 238–241.
Meniconi, S., Brunone, B., Ferrante, M., and Massari, C. (2011b). “Small amplitude sharp pressure waves to diagnose pipe systems.” Water Resour. Manage., 25(1), 79–96.
Meniconi, S., Brunone, B., Ferrante, M., and Massari, C. (2011c). “Transient tests for locating and sizing illegal branches in pipe systems.” J. Hydroinf., 13(3), 334–345.
Meniconi, S., Brunone, B., Ferrante, M., and Massari, C. (2014a). “Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve.” J. Fluid Struct., 45(10), 235–249.
Meniconi, S., Duan, H. F., Brunone, B., Ghidaoui, M. S., Lee, P. J., and Ferrante, M. (2014b). “Further developments in rapidly decelerating turbulent pipe flow modeling.” J. Hydraul. Eng., 04014028.
Meniconi, S., Duan, H. F., Lee, P. J., Brunone, B., Ghidaoui, M. S., and Ferrante, M. (2013). “Experimental investigation of coupled frequency and time-domain transient test–based techniques for partial blockage detection in pipelines.” J. Hydraul. Eng., 1033–1040.
Mitra, A. K., and Rouleau, W. T. (1985). “Radial and axial variations in transient pressure waves transmitted through liquid transmission lines.” ASME J. Fluids Eng., 107(1), 105–111.
Mohapatra, P. K., Chaudhry, M. H., Kassem, A. A., and Moloo, J. (2006). “Detection of partial blockage in single pipelines.” J. Hydraul. Eng., 200–206.
Pezzinga, G. (1999). “Quasi-2D model for unsteady flow in pipe networks.” J. Hydraul. Eng., 676–685.
Pezzinga, G. (2000). “Evaluation of unsteady flow resistances by quasi-2D or 1D models.” J. Hydraul. Eng., 778–785.
Pezzinga, G. (2009). “Local balance unsteady friction model.” J. Hydraul. Eng., 45–56.
Pezzinga, G., Brunone, B., Cannizzaro, D., Ferrante, M., Meniconi, S., and Berni, A. (2014). “Two-dimensional features of viscoelastic models of pipe transients.” J. Hydraul. Eng., 04014036.
Ramos, H. M., Covas, D. I. C., Borga, A., and Loureiro, D. (2004). “Surge damping analysis in pipe systems: Modelling and experiments.” J. Hydraul. Res., 42(4), 413–425.
Reddy, H. P., Silva-Araya, W. F., and Chaudhry, M. H. (2012). “Estimation of decay coefficients for unsteady friction for instantaneous, acceleration-based models.” J. Hydraul. Eng., 260–271.
Riasi, A., Nourbakhsh, A., and Raisee, M. (2013). “Energy dissipation in unsteady turbulent pipe flows caused by water hammer.” Comput. Fluids, 73, 124–133.
Safwat, H. H., and Polder, J. V. D. (1973). “Friction-frequency dependence for oscillatory flows in circular pipe.” J. Hydraul. Div., 99(11), 1933–1945.
Scola, I. R., Besançon, G., and Georges, D. (2016). “Blockage and leak detection and location in pipelines using frequency response optimization.” J. Hydraul. Eng., 04016074.
Shuy, E. B. (1996). “Wall shear stress in accelerating and decelerating turbulent pipe flows.” J. Hydraul. Res., 34(2), 173–183.
Shuy, E. B., and Apelt, C. J. (1983). “Friction effects in unsteady pipe flows.” Proc., 4th Int. Conf. on Pressure Surges, BHRA, Fluid Engineering Centre, Bath, U.K., 147–164.
Silva-Araya, W. F., and Chaudhry, M. H. (1997). “Computation of energy dissipation in transient flow.” J. Hydraul. Eng., 108–115.
Soares, A. K., Martins, N., and Covas, D. I. C. (2015). “Investigation of transient vaporous cavitation: Experimental and numerical analyses.” Procedia Eng., 119, 235–242.
Storli, P.-T., and Nielsen, T. K. (2011a). “Transient friction in pressurized pipes. II: Two-coefficient instantaneous acceleration-based model.” J. Hydraul. Eng., 679–695.
Storli, P.-T., and Nielsen, T. K. (2011b). “Transient friction in pressurized pipes. III: Investigation of the EIT model based on position-dependent coefficient approach in MIAB model.” J. Hydraul. Eng., 1047–1053.
Talukdar, P., Iskra, C. R., and Simonson, C. J. (2008). “Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data.” Int. J. Heat Mass Trans., 51(11–12), 3091–3102.
Trikha, A. K. (1975). “An efficient method for simulating frequency-dependent friction in transient liquid flow.” ASME J. Fluids Eng., 97(1), 97–105.
Tu, J., Yeoh, G. H., and Liu, C. (2008). Computational fluid dynamics—A practical approach, Elsevier, New York.
Vardy, A. E., and Brown, J. M. B. (1995). “Transient, turbulent, smooth pipe friction.” J. Hydraul. Res., 33(4), 435–456.
Vardy, A. E., and Brown, J. M. B. (1996). “On turbulent, unsteady, smooth-pipe friction.” Proc., Pressure Surge and Fluid Transients in Pipelines and Open Channels, BHR Group, Hannover, Germany, 289–311.
Vardy, A. E., and Brown, J. M. B. (2003). “Transient turbulent friction in smooth pipe flows.” J. Sound Vib., 259(5), 1011–1036.
Vardy, A. E., and Brown, J. M. B. (2004). “Transient turbulent friction in fully rough pipe flows.” J. Sound Vib., 270(1–2), 233–257.
Vardy, A. E., Brown, J. M. B., and Hwang, K. L. (1993). “A weighting function model of transient turbulent pipe friction.” J. Hydraul. Res., 31(4), 533–548.
Vítkovský, J. P., Bergant, A., Simpson, A. R., and Lambert, M. F. (2006). “Systematic evaluation of one-dimensional unsteady friction models in simple pipelines.” J. Hydraul. Eng., 696–708.
Vítkovský, J. P., Simpson, A. R., and Lambert, M. F. (2000). “Leak detection and calibration using transients and genetic algorithms.” J. Water Resour. Plann. Manage., 262–265.
Wang, H., et al. (2016). “CFD approach for column separation in water pipelines.” J. Hydraul. Eng., 04016036.
Wylie, E. B., Streeter, V. L., and Suo, L. (1993). Fluid transient in systems, Prentice-Hall, Harlow, U.K.
Zhao, M., and Ghidaoui, M. S. (2006). “Investigation of turbulence behavior in pipe transient using a kappa-epsilon model.” J. Hydraul. Res., 44(5), 682–692.
Zidouh, H. (2009). “Velocity profiles and wall shear stress in turbulent transient pipe flow.” Int. J. Dyn. Fluids, 5(1), 61–83.
Zielke, W. (1968). “Frequency-dependent friction in transient pipe flow.” J. Basic Eng., 90(1), 109–115.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 143Issue 12December 2017

History

Received: Nov 3, 2016
Accepted: May 18, 2017
Published online: Sep 21, 2017
Published in print: Dec 1, 2017
Discussion open until: Feb 21, 2018

Permissions

Request permissions for this article.

Authors

Affiliations

Researcher, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal (corresponding author). ORCID: https://orcid.org/0000-0003-4994-673X. E-mail: [email protected]
B. Brunone, M.ASCE [email protected]
Professor, Dipartimento di Ingegneria Civile ed Ambientale, Univ. of Perugia, 06125 Perugia, Italy. E-mail: [email protected]
S. Meniconi [email protected]
Associate Professor, Dipartimento di Ingegneria Civile ed Ambientale, Univ. of Perugia, 06125 Perugia, Italy. E-mail: [email protected]
H. M. Ramos [email protected]
Associate Professor, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal. E-mail: [email protected]
D. I. C. Covas [email protected]
Associate Professor, Civil Engineering Research and Innovation for Sustainability, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share