Technical Papers
Feb 19, 2014

Numerical Treatment of the Resistance Term in Upwind Schemes in Debris Flow Runout Modeling

Publication: Journal of Hydraulic Engineering
Volume 140, Issue 5

Abstract

Fast flows and avalanches of rock and debris are among the most dangerous of all landslide processes. Understanding and predicting postfailure motion (runout) of this kind of flowlike landslides is thus key for risk assessment, justifying the development of numerical models able to simulate their dynamics. In this paper a numerical method for the resolution of the depth-averaged debris flow model is presented. This set of nonlinear differential equations is formed by a variation of the shallow water equations, including strong bed slope, and a rheology resistance term. This paper focus on the numerical discretization of the resistance term, exploring three different approximations: pointwise, implicit, and unified. Well balance between numerical flux and source terms is only achieved using the unified discretization. In order to avoid nonphysical values of the water depth and discharge, a limitation of the unified resistance term is also needed. This correction is made following three conditions that identify the physical boundaries of the resistance term in the debris flow. This technique does not affect the computational efficiency of the method, keeping the original time step. Furthermore, proposed analytical test cases show that the three resistance limitations do not significantly perturb the numerical solution. The properties of the resulting numerical scheme are studied using a set of numerical experiments that include steady and transient flows. The results show the convenience of the unified discretization and the need of the three-condition limitation in order to avoid unphysical solutions.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research was supported by project ChangingRISKS (OPE00446 / PIM2010ECR-00726) financed by EU ERA-NET CIRCLE Programme, and Grupo de Excelencia E68 financed by the Aragón Government and the European Social Fund (ESF).

References

Beguería, S., van Asch, T. J., Malet, J. P., and Gröndahl, S. (2009a). “A GIS-based numerical model for simulating the kinematics of mud and debris flows over complex terrain.” Nat. Hazards Earth Syst. Sci., 9, 1897–1909.
Beguería, S., van Hees, M. J., and Geertsema, M. (2009b). “Comparison of three landslide runout models on the Turnoff Creek rock avalanche, British Columbia.” Landslide processes: From geomorphology mapping to dynamic modelling, Centre Européen sur les Risques Géomorphologiques (CERG), Strasbourg, France, 243–247.
Bertolo, P., and Wieczorek, G. F. (2005). “Calibration of numerical models for small debris flows in Yosemite Valley, California, USA.” Nat. Hazards Earth Syst. Sci., 5, 993–1001.
Brufau, P., García-Navarro, P., Ghilardi, P., Natale, L., and Savi, F. (2000). “1D mathematical modelling of debris flow.” J. Hydraul. Res., 38(6), 435–446.
Burguete, J. (2003). “Modelos unidimensionales de flujos de superficie libre y transporte en geometrías irregulares: Aplicación al flujo en ríos.” Ph.D. thesis, Univ. of Zaragoza, Zaragoza, Spain.
Burguete, J., and García-Navarro, P. (2001). “Efficient construction of high-resolution TVD conservative schemes for equations with source terms: Application to shallow water flows.” Int. J. Numer. Meth. Fluids, 37(2), 209–248.
Burguete, J., and García-Navarro, P. (2004). “Improving simple explicit methods for unsteady open channel and river flow.” Int. J. Numer. Meth. Fluids, 45(2), 125–156.
Burguete, J., García-Navarro, P., and Murillo, J. (2006). “Numerical boundary conditions for globally mass conservative methods to solve the shallow-water equations and applied to river flow.” Int. J. Numer. Meth. Fluids, 51(6), 585–615.
Burguete, J., García-Navarro, P., and Murillo, J. (2008). “Friction term discretization and limitation to preserve stability and conservation in the 1D shallow-water model: Application to unsteady irrigation and river flow.” Int. J. Numer. Meth. Fluids, 58(4), 403–425.
Burguete, J., García-Navarro, P., Murillo, J., and García-Palacín, I. (2007). “Analysis of the friction term in the one-dimensional shallow water model.” J. Hydraul. Eng., 1048–1063.
Courant, R., Friedrichs, K. O., and Lewy, H. (1928). “Über die partiellen differenzengleichungen der mathematischen Physik.” Math. Ann., 100(1), 32–74.
Coussot, P. (1997). Mudflow rheology and dynamics, A. A. Balkema, Rotterdam, The Netherlands.
Coussot, P., and Ancey, C. (1999). “Rheophysical classification of concentrated suspensions and granular pastes.” Phys. Rev. E, 59(4), 4445–4457.
de Saint-Venant, A. J. C. B. (1871). “Théorie de mouvement non-permanent des eaux avec application aux crues de rivières et á l’introduction de marées dans leur lit.” Comptes Rendus des Séances de l'Académie des Sciences, 73, (147–154), 237–240.
Delis, A. I., Nikolos, I. K., and Kazolea, M. (2011). “Performance and comparison of cell-centered and node-centered unstructured finite volume discretizations for shallow water free surface flows.” Arch. Comput. Meth. Eng., 18(1), 57–118.
Denlinger, R. P., and Iverson, R. M. (2001). “Flow of variably fluidized granular masses across three-dimensional terrain.” J. Geophys. Res., 106(B1), 553–566.
Hungr, O. (1995). “A model for the runout analysis of rapid flow slide, debris flow, and avalanches.” Can. Geotech. J., 32(4), 610–623.
Hungr, O., and Evans, S. G. (1996). “Rock avalanche runout prediction using a dynamic model.” 7th Int. Symp. on Landslides, Balkema, Rotterdam, 233–238.
Iverson, R. M. (1997). “The physics of debris flows.” Rev. Geophys., 35(3), 245–296.
Kent, A., and Hungr, O. (1995). “Runout characteristics of debris from dump failures in mountainous terrain: Stage 2: Analysis, modelling and prediction.” British Columbia Mine Waste Rock Pile Research Committee and CANMET–Western Research Centre, Edmonton, Alberta.
Koerner, H. J. (1976). “Reichweite und geschwindigkeit von bergstürzen und fleis-schneelawinen.” Rock Mech., 8(4), 225–256.
Laigle, D., and Coussot, P. (1997). “Numerical modelling of mudflows.” J. Hydraul. Eng., 617–623.
Landau, L., and Lifchitz, E. (1988). Fluid mechanics, 2nd Ed., Pergamon Press, Oxford, U.K.
MacDonald, I., Baines, M. J., Nichols, N. K., and Samuels, P. G. (1997). “Analytical benchmark solutions for open-channel flows.” J. Hydraul. Eng., 1041–1045.
Mangeney-Castelnau, A., Bouchut, F., Vilotte, J. P., Lajeunesse, E., Aubertin, A., and Pirulli, M. (2005). “On the use of Saint Venant equations to simulate the spreading of a granular mass.” J. Geophys. Res., 110(B9), B09103.
McLellan, P. J., and Kaiser, P. K. (1984). “Application of a two-parameter model to rock avalanches in the mackenzine mountains.” Proc., 4th Int. Symp. on Landslides, 135–140.
Murillo, J., and García-Navarro, P. (2012). “Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods.” J. Comput. Phys., 231(4), 1963–2001.
Murillo, J., García-Navarro, P., and Burguete, J. (2007). “The influence of source terms on stability, accuracy and conservation in 2D shallow flow simulation using triangular finite volumes.” Int. J. Numer. Meth. Fluids, 54(5), 543–590.
Murillo, J., García-Navarro, P., and Burguete, J. (2009). “Time step restrictions for well-balanced shallow water solutions in non-zero velocity steady states.” Int. J. Numer. Meth. Fluids, 60(12), 1351–1377.
O’Brien, J. S., and Julien, P. Y. (1993). “Two-dimensional water flood and mudflow simulation.” J. Hydraul. Eng., 244–261.
Rickenmann, D., and Koch, T. (1997). “Comparison of debris flow modelling approaches.” 1st Int. Conf. on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, C. L. Chen, ed., ASCE, New York, 576–585.
Roe, P. L. (1981). “Approximate Riemann solvers, parameter vectors, and difference schemes.” J. Comput. Phys., 43(2), 357–372.
Takahashi, T. (1991). Debris flow, Balkema, Rotterdam, The Netherlands.
Voellmy, A. (1955). “Über die Zerstörungskraft von Lawinen.” Schweizer Bauzeitung, 73(12), 159–162.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 140Issue 5May 2014

History

Received: Sep 18, 2012
Accepted: Jan 3, 2014
Published online: Feb 19, 2014
Published in print: May 1, 2014
Discussion open until: Jul 19, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Guillermo Sánchez Burillo [email protected]
Researcher, Dept. Suelo y Agua, Estación Experimental de Aula Dei, EEAD-CSIC; and Lecturer, Escuela Universitaria Politécnica de La Almunia (EUPLA), Universidad de Zaragoza, Mayor s/n, 50100 La Almunia, Spain (corresponding author). E-mail: [email protected]
Santiago Beguería [email protected]
Researcher, Dept. Suelo y Agua, Estación Experimental de Aula Dei, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box. 202, 50080 Zaragoza, Spain. E-mail: [email protected]
Borja Latorre [email protected]
Researcher, Dept. Suelo y Agua, Estación Experimental de Aula Dei, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box. 202, 50080 Zaragoza, Spain. E-mail: [email protected]
Javier Burguete [email protected]
Researcher, Dept. Suelo y Agua, Estación Experimental de Aula Dei, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas (EEAD-CSIC), P.O. Box. 202, 50080 Zaragoza, Spain; and Associated Researcher, Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share