TECHNICAL PAPERS
Apr 13, 2011

Large Eddy Simulation of Sediment Deformation in a Turbulent Flow by Means of Level-Set Method

Publication: Journal of Hydraulic Engineering
Volume 137, Issue 11

Abstract

Sediment transport in a turbulent channel flow over the sediment bed with a ripple structure is numerically simulated by means of a large eddy simulation. The filtered Navier-Stokes equations for the channel flow and the filtered advection-diffusion equation with a settling term for the suspended sediment are numerically solved, in which the unresolved subgrid-scale processes are modeled by the dynamic subgrid-scale model of Germano et al. The migration and deformation of the interface between the sediment bed and the fluid flow is captured by the level-set method. The sediment erosion is approached by means of three different pickup relations postulated by van Rijn, Einstein, and Yalin, respectively, partly modified by the authors. Generally, the sediment is entrained into the flow from locations where the shear stress exceeds a critical value—on the upstream slopes of ripple crests—and is advected downstream in suspension by the flow, until it settles again when the local flow condition cannot further transport it, e.g., on the lee sides of ripples. A global effect of these local processes is the migration of ripples. The numerical results on the fluid flow field and the sediment concentration distribution are discussed. The computed migration speed of the ripples, which is only a fraction of the free stream velocity, is compared with known experimental data and a good agreement is demonstrated.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The writers are indebted to the Deutsche Forschungsgemeinschaft (UNSPECIFIEDDFG) for the financial support through the grant UNSPECIFIEDOB 96/17-1.

References

Adalsteinsson, D., and Sethian, J. A. (1999). “The fast construction of extension velocities in level set methods.” J. Comput. Phys., 148(1), 2–22.
Bennett, S. J., and Best, J. L. (1995). “Mean flow and turbulence structure over fixed, two dimensional dunes: Implication for sediment transport and bedform stability.” Sedimentology, 42(3), 491–513.
Breusers, H. N. C., and Raudkivi, A. J. (1991). IAHR hydraulic structures design manual 2 scouring, hydraulic design consideration, A. A. Balkema, Rotterdamm, Netherlands.
Chang, Y. S., and Scotti, A. (2003). “Entrainment and suspension of sediment into a turbulent flow over ripples.” J. Turbul., 4(19), 1–22.
Chang, Y. S., and Scotti, A. (2004). “Modeling unsteady turbulent flows over ripples: Reynolds-averaged Navier-Stokes equations (RANS) versus large-eddy simulation (LES).” J. Geophys. Res., 109, C09012.
Duc, B., Wenka, T., and Rodi, W. (2004). “Numerical modeling of bed deformation in laboratory channels.” J. Hydraul. Eng., 130(9), 894–904.
Einstein, H. (1950). “The bed-load function for sediment transportation in open channel flow.” Technical Bulletin No. 1026, U.S. Dept. of Agriculture, Washington, DC.
FASTEST. (2001). “User manual—FASTEST3D.” Ivent Computing.
Fürböter, A. (1983). “Zur Bildung von makroskopischen Ordnungsstrukturen (Strömungsriffel und Dünen) aus sehr kleinen Zufallsstörungen.” Vol. 79, Leichtweiss-Institut für Wasserbau der TU Braunschweig Mitteilungen.
Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. (1991). “A dynamic subgrid-scale eddy viscosity model.” Phys. Fluids A, 3(7), 1760–1765.
Haslinger, W. (1993). “Berechnung der turbulenten Strömung in einem welligen, offenen Gerinne mit Hilfe eines Mehrschichtenmodells.” Masters thesis, Institut für Technische Thermodynamik, Technische Hochschule Darmstadt, Darmstadt, Germany.
Kraft, S. (2009). “Modellierung der Verformung kohäsonslosen Materials durch turbulente Strömungen mit Hilfe der Level Set Methode.” Ph.D. thesis, Technischen Universität Darmstadt, Darmstadt, Germany.
Kühlborn, J. (1993). “Wachstum und Wanderung von Sedimentriffel.” Technische Berichte über Ingenieurhydrologie und Hydraulik, Vol. 49, Technische Hochschule Darmstadt.
Leister, H. J., and Perić, M. (1994). “Vectorized strongly implicit solving procedure for seven-diagonal coefficient matrix.” Int. J. Numer. Methods Heat Fluid Flow, 4(2), 159–172.
Lilly, D. K. (1967). “The representation of small-scale turbulence in numerical simulation experiments.” Proc., IBM Scientific Computing Symp. Environmental Sciences, H. H. Goldstine, ed., Yorktown Heights, NY, 195–210.
Moin, P., and Kim, J. (1982). “Numerical investigation of turbulent channel flow.” J. Fluid Mech., 118, 341–377.
Osher, S., and Sethian, J. A. (1988). “Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations.” J. Comput. Phys., 79(1), 12–49.
Piomelli, U. (1993). “High Reynolds number calculations using the dynamic subgrid-scale stress model.” Phys. Fluids A, 5(6), 1484–1490.
Piomelli, U., and Zang, T. A. (1991). “Large-eddy simulation of transitional channel flow.” Comput. Phys. Commun., 65(1–3), 224–230.
Raudkivi, A. J. (1963). “Study of sediment ripple formation.” J. Hydraul. Div., 89(6), 15–33.
Sethian, J. A. (1996). “Level set methods: Evolving interfaces in geometry.” Fluid mechanics, computer vision and material science, Cambridge Univ. Press, Cambridge, UK.
Shields, A. (1936). “Anwendung der Ähnlichkeitsmechanik und der Turbulenzforschung auf die Geschiebebewegung.” Vol. 26, Mitteilung der Preußischen Versuchsanstalt für Wasser und Schiffsbau, Berlin.
Smagorinsky, J. (1963). “General circulation experiments with the primitive equations I. The basic experiment.” Mon. Weather Rev., 91(3), 99–165.
Soulsby, R. L., Atkins, R., and Salkfield, P. (1994). “Observation of the turbulent structure of suspension of sand in a tidal current.” Cont. Shelf Res., 14(4), 429–435.
Tseng, Y.-H., and Ferziger, J. H. (2003). “A ghost-cell immersed boundary method for flow in complex geometry.” J. Comput. Phys., 192(2), 593–623.
van Mierlo, M. C. L. M., and Ruiter, J. C. C. (1988). “Turbulence measurement above artificial dunes.” TOW A55 Vol. I, u. II, Rep. Q 789, Delft Hydraulics.
van Rijn, L. C. (1984a). “Sediment pick-up functions.” J. Hydraul. Eng., 110(10), 1494–1502.
van Rijn, L. C. (1984b). “Sediment transport. Part II: Suspended load transport.” J. Hydraul. Eng., 110(11), 1613–1641.
van Rijn, L. C. (1987). “Mathematical modeling of morphological processes in case of suspended sediment transport.” Delft Hydraulics, Communication No. 382.
Wallisch, S. (1996). “Ein mathematisches Modell zur Berechnung der hydromechanischen Beanspruchung von Riffelsohlen.” Ph.D. thesis, Technische Hochschule Darmstadt, Technische Berichte über Ingenieurhydrologie und Hydraulik, Vol. 54.
Wu, W., Rodi, W., and Wenka, T. (2000). “3D numerical modeling of flow and sediment transport in open channel.” J. Hydraul. Eng., 126(1), 4–15.
Yalin, M. S. (1977). Mechanics of sediment transport, 2nd Ed., Pergamon, Oxford, UK.
Yalin, M. S. (1985). “On the determination of ripple geometry.” J. Hydraul. Eng., 111(8), 1148–1155.
Zanke, U. C. E. (1977). “Berechnung der Sinkgeschwindigkeiten von Sedimenten.” Mitteilungen des Franzius-Instituts für Wasserbau, Technische Universität Hannover, 46, 243.
Zanke, U. C. E. (1999). “Zur Physik von strömungsgetriebenem Sediment (Geschiebetrieb).” Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft, Vol. 106, Technische Hochschule Darmstadt.
Zanke, U. C. E. (2001). “Zum Einfluss der Turbulenz auf den Beginn der Sedimentbewegung.” Mitteilungen des Instituts für Wasserbau und Wasserwirtschaft, Vol. 120, Technische Hochschule Darmstadt.
Zedler, E., and Street, R. L. (2001). “Large eddy simulation of sediment transport: current over ripples.” J. Hydraul. Eng., 127(6), 444–452.

Information & Authors

Information

Published In

Go to Journal of Hydraulic Engineering
Journal of Hydraulic Engineering
Volume 137Issue 11November 2011
Pages: 1394 - 1405

History

Received: Sep 14, 2010
Accepted: Apr 11, 2011
Published online: Apr 13, 2011
Published in print: Nov 1, 2011

Permissions

Request permissions for this article.

Authors

Affiliations

Susanne Kraft
Chair of Fluid Dynamics, Dept. of Mechanical Engineering, Technische Universität at Darmstadt, Petersenstrasse 30, 64287 Darmstadt, Germany.
Yongqi Wang
Chair of Fluid Dynamics, Dept. of Mechanical Engineering, Technische Universität at Darmstadt, Petersenstrasse 30, 64287 Darmstadt, Germany. (corresponding author). E-mail: [email protected]
Martin Oberlack
Chair of Fluid Dynamics, Dept. of Mechanical Engineering, Technische Universität at Darmstadt, Petersenstrasse 30, 64287 Darmstadt, Germany.; Center of Smart Interfaces, Technische Universität at Darmstadt, Petersenstrasse 32, 64287 Darmstadt, Germany; Graduate School of Computational Engineering, Technische Universität at Darmstadt, Dolivostrasse 15, 64293 Darmstadt, Germany.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share