Abstract

In this study, methods were developed to create and evaluate the performance of the Soil and Water Assessment Tool (SWAT) in southern Peru where commonly used input data sources were not available. Soil classes were defined based on regional soil taxonomy and suitability maps combined with soil profiles. Local land cover and remotely sensed satellite data were used to develop a land cover database. Water balance analysis of the reservoir as well as satellite evapotranspiration data were used for model performance assessment. Results showed that these strategies provided reliable predictions of hydrology in this region, with the uncertainty quantified based on the range of inputs. Overall, this semiarid watershed was base flow driven and average annual surface runoff contribution to streamflow was less than 9%. Assessment of water pathways and their uncertainties based on the uncertainty of estimated inputs also showed that 62% of precipitation was removed by evapotranspiration with up to 16% uncertainty. The methods introduced in this study can be applied to other data-scarce watersheds, and findings provide insights on the hydrology of the Peruvian Andes region.

Formats available

You can view the full content in the following formats:

Data Availability Statement

All input data used in this research are publicly available. All data, models, or code generated during the study are available from the corresponding author by request. Soil and land cover data sets developed for this project are available online (Daneshvar et al. 2020a, b).

Acknowledgments

Funds to support research in the Arequipa Nexus Institute for Food, Energy, Water, and the Environment were provided by the Universidad Nacional de San Agustin.

References

Ahmed, E., F. Al Janabi, J. Zhang, W. Yang, N. Saddique, and P. Krebs. 2020. “Hydrologic assessment of TRMM and GPM-based precipitation products in transboundary river catchment (Chenab River, Pakistan).” Water 12 (7): 1902. https://doi.org/10.3390/w12071902.
ANA (Autoridad Nacional del Agua). 2014. Dirección de Gestión de Calidad de los Recursos Hídricos. Evaluación integral de la calidad del agua de los embalses y ríos que conforman el Sistema Hidráulico Chili—Arequipa: Informe técnico. Lima, Peru: ANA.
Arnold, J. G., J. R. Kiniry, R. Srinivasan, J. R. Williams, E. B. Haney, and S. L. Neitsch. 2013. SWAT 2012 input/output documentation. Forney, TX: Texas Water Resources Institute.
AUTODEMA (Autoridad Aut´onoma de Majes). 2019. “Movimiento Hidrico.” Accessed October 29, 2019. https://www.autodema.gob.pe/movimiento-hidrico/.
Beaudette, D. E., P. Roudier, and A. T. O’Geen. 2013. “Algorithms for quantitative pedology: A toolkit for soil scientists.” Comput. Geosci. 52 (Mar): 258–268. https://doi.org/10.1016/j.cageo.2012.10.020.
Biru, Z., and D. Kumar. 2018. “Calibration and validation of SWAT model using stream flow and sediment load for Mojo watershed, Ethiopia.” Sustainable Water Resour. Manage. 4 (4): 937–949. https://doi.org/10.1007/s40899-017-0189-1.
Censos Nacionales. 2017. “Resultados definitivos de los Censos Nacionales 2017.” Accessed October 29, 2019. http://censo2017.inei.gob.pe/resultados-definitivos-de-los-censos-nacionales-2017/.
CFSR (Climate Forecast System Reanalysis). 2019. “Global weather data for SWAT.” Accessed October 10, 2019. https://globalweather.tamu.edu.
Chevallier, P., B. Pouyaud, W. Suarez, and T. Condom. 2011. “Climate change threats to environment in the tropical Andes: Glaciers and water resources.” Supplement, Reg. Environ. Change 11 (S1): 179–187. https://doi.org/10.1007/s10113-010-0177-6.
Correa-Muñoz, N. A., C. A. Murillo-Feo, and L. J. Martínez-Martínez. 2019. “The potential of PALSAR RTC elevation data for landform semi-automatic detection and landslide susceptibility modeling.” Supplement, Eur. J. Remote Sens. 52 (S1): 148–159. https://doi.org/10.1080/22797254.2018.1552087.
Daneshvar, F., I. Chaubey, L. C. Bowling, K. A. Cherkauer, A. G. de Lima Moraes, and J. A. Herrera Quispe. 2018. “Assessment of climate change impacts on semi-arid watersheds in Peru.” In Proc., AGU Fall Meeting Abstracts. Washington, DC: American Geophysical Union. https://doi.org/10.4231/GYN8-W684.
Daneshvar, F., J. R. Frankenberger, L. C. Bowling, K. A. Cherkauer, and J. A. Vera Mercado. 2020a. Estimated land cover properties for hydrologic modeling in Arequipa, Peru. West Lafayette, IN: Purdue Univ. Research Repository.
Daneshvar, F., J. R. Frankenberger, L. C. Bowling, K. A. Cherkauer, and M. J. Villalta Soto. 2020b. Estimated soil physical properties for hydrologic modeling in Arequipa, Peru. West Lafayette, IN: Purdue Univ. Research Repository. https://doi.org/10.4231/N5MX-9W30.
Devia, G. K., B. P. Ganasri, and G. S. Dwarakish. 2015. “A review on hydrological models.” Aquat. Procedia 4 (1): 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126.
Di, H. J., and R. A. Kemp. 1989. “Variation in soil physical properties between and within morphologically defined series taxonomic units.” Soil Re. 27 (2): 259–273. https://doi.org/10.1071/SR9890259.
Dile, Y. T., and R. Srinivasan. 2014. “Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile river basin.” J. Am. Water Resour. Assoc. 50 (5): 1226–1241. https://doi.org/10.1111/jawr.12182.
Earthdata. 2019a. “ASF data search vertex.” Accessed October 10, 2019. https://search.asf.alaska.edu/#/?flightDirs=.
Earth Data. 2019b. “MODIS/VIIRS subsets, get data.” Accessed October 10, 2019. https://modis.ornl.gov/data.html.
Ercan, M. B., V. Lakshmi, G. Skofronick Jackson, and G. J. Huffman. 2015. “Use of TRMM and GPM multi-satellite precipitation data for hydrological modeling.” In Proc., AGU Fall Meeting Abstracts. Washington, DC: American Geophysical Union.
FAO (Food and Agriculture Organization of the United Nations). 2019. “FAOSTAT data.” Accessed April 15, 2020. http://www.fao.org/faostat/en/#data.
FAO/UNESCO (Food and Agriculture Organization/UNESCO). 2003. Digital soil map of the world and derived soil properties. Rome: FAO.
Friedrich, K., et al. 2018. “Reservoir evaporation in the Western United States: Current science, challenges, and future needs.” Bull. Am. Meteorol. Soc. 99 (1): 167–187. https://doi.org/10.1175/BAMS-D-15-00224.1.
García Quijano, J. F. 2018. Estudio hidrológico de las cuencas Camaná, Majes, Sihuas, Quilca-Vittor-Chili con información satelital. Lima, Peru: Universidad Nacional Agraria La Molina.
George, C., and L. F. Leon. 2008. “WaterBase: SWAT in an open source GIS.” Open Hydrol. J. 2 (1): 1–6. https://doi.org/10.2174/1874378100802010001.
Gitau, M. W., and I. Chaubey. 2010. “Regionalization of SWAT model parameters for use in ungauged watersheds.” Water 2 (4): 849–871. https://doi.org/10.3390/w2040849.
Gobierno Regional Arequipa. 2016. Elaboración del Estudio de Suelos y la Clasificación de Tierras por su Capacidad de Uso Mayor en la Región Arequipa. Proyecto Desarrollo de Capacidades en Zonificación Ecológica Económica para el Ordenamiento Territorial en la Región Arequipa, Autoridad Regional Ambiental de Arequipa. Arequipa, Perú: Gobierno Regional Arequipa.
Gupta, H. V., S. Sorooshian, and P. O. Yapo. 1999. “Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration.” J. Hydrol. Eng. 4 (2): 135–143. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(135).
Jodar-Abellan, A., J. Valdes-Abellan, C. Pla, and F. Gomariz-Castillo. 2019. “Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain).” Sci. Total Environ. 657 (Mar): 1578–1591. https://doi.org/10.1016/j.scitotenv.2018.12.034.
Kummu, M., J. H. Guillaume, H. de Moel, S. Eisner, M. Flörke, M. Porkka, S. Siebert, T. I. Veldkamp, and P. J. Ward. 2016. “The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability.” Sci. Rep. 6 (1): 38495. https://doi.org/10.1038/srep38495.
Mekonnen, M. M., and A. Y. Hoekstra. 2011. “The green, blue and grey water footprint of crops and derived crop products.” Hydrol. Earth Syst. Sci. Discuss. 15 (1): 1577–1600. https://doi.org/10.5194/hess-15-1577-2011.
Mengistu, A. G., L. D. van Rensburg, and Y. E. Woyessa. 2019. “Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa.” J. Hydrol.: Reg. Stud. 25 (Oct): 100621. https://doi.org/10.1016/j.ejrh.2019.100621.
MINAM (Ministry of Environment of Peru). 2017. “Zonificación Ecológica y Económica (ZEE).” Accessed November 26, 2019. https://www.minam.gob.pe/ordenamientoterritorial/zonificacion-ecologica-y-economica-zee/.
Ministerio del Ambiente. 2019. “Servicio nacional de meteorología e hidrología del Perú.” Accessed October 29, 2019. https://www.senamhi.gob.pe/.
Monteith, J. L. 1965. “Evaporation and environment.” In Vol. 19 of Proc., Symposia of the Society for Experimental Biology, 205–234. Cambridge, UK: Cambridge University Press.
Moraes, A. G. D. L., E. F. Bocardo-Delgado, L. C. Bowling, F. Daneshvar, J. Pinto, A. H. Watkins, and K. A. Cherkauer. 2020. “Assessment of Arequipa’s hydrometeorological monitoring infrastructure to support water management decisions.” J. Contemp. Water Res. Educ. 171 (1): 27–48. https://doi.org/10.1111/j.1936-704X.2020.3343.x.
Moraes, A. G. L., L. C. Bowling, C. R. Zeballos Velarde, and K. A. Cherkauer. 2019. Arequipa climate maps—Normals. West Lafayette, IN: Purdue Univ. Research Repository.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Moriasi, D. N., M. W. Gitau, N. Pai, and P. Daggupati. 2015. “Hydrologic and water quality models: Performance measures and evaluation criteria.” Trans. ASABE 58 (6): 1763–1785. https://doi.org/10.13031/trans.58.10715.
Myneni, R., Y. Knyazikhin, and T. Park. 2015. MODIS/Terra+Aqua leaf area index/FPAR 4-day L4 global 500m SIN grid. Washington, DC: National Aeronautics and Space Administration (NASA) Earth Observation System Data and Information System (EOSDIS) Land Processes Distributed Active Archive Center (DAAC). https://doi.org/10.5067/MODIS/MCD15A3H.006.
Narasimhan, B., K. Sangeetha, and Y. Dhanesh. 2012. “Development of soil and landuse map for hydrological modelling purposes using SWAT.” In Proc., 2012 Int. SWAT Conf. Milwaukee, WI: SWAT.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Ndomba, P., F. Mtalo, and A. Killingtveit. 2008. “SWAT model application in a data scarce tropical complex catchment in Tanzania.” Phys. Chem. Earth, Parts A/B/C 33 (8–13): 626–632. https://doi.org/10.1016/j.pce.2008.06.013.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, and J. R. Williams. 2011. Soil and water assessment tool theoretical documentation version 2009. Forney, TX: Texas Water Resources Institute.
Niipele, J. N., and J. Chen. 2019. “The usefulness of alos-palsar dem data for drainage extraction in semi-arid environments in the Iishana sub-basin.” J. Hydrol.: Reg. Stud. 21 (Feb): 57–67. https://doi.org/10.1016/j.ejrh.2018.11.003.
Oñate-Valdivieso, F., and J. B. Sendra. 2014. “Semidistributed hydrological model with scarce information: Application to a large South American binational basin.” J. Hydrol. Eng. 19 (5): 1006–1014. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000853.
ORNL DAAC (Oak Ridge National Laboratory Distributed Active Archive Center). 2018a. MODIS/Terra+Aqua leaf area index/FPAR 4-day L4 global 500m SIN grid V006. MCD15A3H V006. Oak Ridge, TN: ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1379.
ORNL DAAC (Oak Ridge National Laboratory Distributed Active Archive Center). 2018b. MODIS/Terra Net Evapotranspiration 8-day L4 global 500m SIN grid V006. MOD16A2 V006. Oak Ridge, TN: ORNL DAAC. https://doi.org/10.3334/ORNLDAAC/1379.
Quesada, C. A., et al. 2010. “Variations in chemical and physical properties of Amazon forest soils in relation to their genesis.” Biogeosciences 7 (5): 1515–1541. https://doi.org/10.5194/bg-7-1515-2010.
Reek, T., S. R. Doty, and T. W. Owen. 1992. “A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network.” Bull. Am. Meteorol. Soc. 73 (6): 753–762. https://doi.org/10.1175/1520-0477(1992)073%3C0753:ADATTV%3E2.0.CO;2.
Running, S., Q. Mu, and M. Zhao. 2017. MODIS/Terra Net Evapotranspiration 8-day L4 global 500m SIN grid. Washington, DC: National Aeronautics and Space Administration (NASA) Earth Observation System Data and Information System (EOSDIS) Land Processes Distributed Active Archive Center (DAAC). https://doi.org/10.5067/MODIS/MOD16A2.006.
Saxton, K. E., and W. J. Rawls. 2006. “Soil water characteristic estimates by texture and organic matter for hydrologic solutions.” Soil Sci. Soc. Am. J. 70 (5): 1569–1578. https://doi.org/10.2136/sssaj2005.0117.
SENACE (Servicio Nacional de Clasificación Ambiental para las Inversiones Sostenibles). 2009. Aprueban Reglamento de Clasificación de Tierras por su Capacidad de Uso Mayor. Lima, Peru: Ministerio de Agricultura y Riego—MINAGRI.
Sivapalan, M. 2003. “Prediction in ungauged basins: A grand challenge for theoretical hydrology.” Hydrol. Processes 17 (15): 3163–3170. https://doi.org/10.1002/hyp.5155.
Smedema, L. K., and D. W. Rycroft. 1983. Land drainage-planning and design of agricultural: Drainage systems. Ithaca, NY: Cornel University Press.
Stensrud, A. B. 2016. “Dreams of growth and fear of water crisis: The ambivalence of ‘progress’ in the Majes-Siguas irrigation project, Peru.” Hist. Anthropol. 27 (5): 569–584. https://doi.org/10.1080/02757206.2016.1222526.
SWAT (Soil and Water Assessment Tool) Literature Database. 2020. “SWAT literature database for peer-reviewed journal articles.” Accessed April 25, 2020. https://www.card.iastate.edu/swat_articles/.
Tanny, J., S. Cohen, S. Assouline, F. Lange, A. Grava, D. Berger, B. Teltch, and M. B. Parlange. 2008. “Evaporation from a small water reservoir: Direct measurements and estimates.” J. Hydrol. 351 (1–2): 218–229. https://doi.org/10.1016/j.jhydrol.2007.12.012.
UAF-ASF (Univ. of Alaska Fairbank—Alaska Satellite Facility). 2019. “Radiometric terrain correction.” Accessed October 10, 2019. https://www.asf.alaska.edu/sar-data/palsar/terrain-corrected-rtc/.
Uribe, N., M. Quintero, and J. Valencia. 2013. Aplicación del modelo hidrológico SWAT (Soil and Water Assessment Tool) a la cuenca del Río Cañete (SWAT). Cali, Colombia: Centro Internacional de Agricultura Tropical.
USDA-NRCS (Natural Resources Conservation Practice). 2015. Illustrated guide to soil taxonomy, version 2. Lincoln, Nebraska: Natural Resources Conservation Service, National Soil Survey Center.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 7July 2021

History

Received: Jun 21, 2020
Accepted: Jan 12, 2021
Published online: May 11, 2021
Published in print: Jul 1, 2021
Discussion open until: Oct 11, 2021

Authors

Affiliations

Postdoctoral Research Associate, Dept. of Agricultural and Biological Engineering, Purdue Univ., West Lafayette, IN 47907 (corresponding author). ORCID: https://orcid.org/0000-0002-8375-4697. Email: [email protected]
Professor, Dept. of Agricultural and Biological Engineering, Purdue Univ., West Lafayette, IN 47907. ORCID: https://orcid.org/0000-0002-2781-0041. Email: [email protected]
Laura C. Bowling [email protected]
Professor, Dept. of Agronomy, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]
Professor, Dept. of Agricultural and Biological Engineering, Purdue Univ., West Lafayette, IN 47907. ORCID: https://orcid.org/0000-0002-6938-5303. Email: [email protected]
Andre G. de Lima Moraes [email protected]
Postdoctoral Research Associate, Dept. of Agricultural and Biological Engineering, Purdue Univ., West Lafayette, IN 47907. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Coupled Data Analytics–SWAT Approach for Flow Generation and Analysis in Ungauged Tropical Watershed, Journal of Hydrologic Engineering, 10.1061/JHYEFF.HEENG-5964, 29, 4, (2024).
  • A multi-criteria approach for improving streamflow prediction in a rapidly urbanizing data scarce catchment, International Journal of River Basin Management, 10.1080/15715124.2023.2188597, (1-14), (2023).
  • Hydrological modeling in a region with sparsely observed data in the eastern Central Andes of Peru, Amazon, Journal of South American Earth Sciences, 10.1016/j.jsames.2022.104151, 121, (104151), (2023).
  • Preliminary assessment of small hydropower potential using the Soil and Water Assessment Tool model: A case study of Central Equatoria State, South Sudan, Energy Reports, 10.1016/j.egyr.2023.01.014, 9, (2229-2246), (2023).
  • Precipitation–runoff simulation in Xiushui river basin using HEC–HMS hydrological model, Modeling Earth Systems and Environment, 10.1007/s40808-022-01679-x, (2023).
  • Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets, Water, 10.3390/w14091480, 14, 9, (1480), (2022).
  • Assessment of Reservoir Inflow Prediction Through Constraining SWAT Parameters to Remotely Sensed ET Data in Data Scarce Region of Chennai, India, IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, 10.1109/IGARSS46834.2022.9884211, (7875-7878), (2022).
  • Modelling of Streamflow and Water Balance in the Kuttiyadi River Basin Using SWAT and Remote Sensing/GIS Tools, International Journal of Environmental Research, 10.1007/s41742-022-00416-7, 16, 4, (2022).
  • Integrated Geospatial Analysis and Hydrological Modeling for Peak Flow and Volume Simulation in Rwanda, Water, 10.3390/w13202926, 13, 20, (2926), (2021).
  • Application of Satellite-Based and Observed Precipitation Datasets for Hydrological Simulation in the Upper Mahi River Basin of Rajasthan, India, Sustainability, 10.3390/su13147560, 13, 14, (7560), (2021).

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share