Abstract

This work presents web mapping of extreme daily precipitation values in central and northern Argentina, including values of both annual maximum precipitation (AMP) for different return periods, and probable maximum precipitation (PMP) estimated following a statistical approach proposed in previous work. Historical daily precipitation records of 1,564 stations were used in this work and universal kriging was used for interpolating local estimates in the study area, which includes different topographic and climatic regions (Subandean, Subtropical plains, and the Pampas). The AMP and PMP 5-km grid maps show a clear west-east gradient, although AMP for higher return periods and PMP show more uniform spatial pattern. The kriging variance maps show the highest uncertainties in regions that have no gages at the mainly higher elevations (regions not included in the final version of the maps). The web-mapping application was developed to make the maps available for project designers and risk managers, and represents an important innovation in Argentina.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data generated during the study are available online at https://sgainacirsa.ddns.net/cirsa/mapas/pmpd.xhtml.

Acknowledgments

The authors acknowledge all the institutions that collaborated with precipitation data compilation and processing used in this work. The authors are also grateful to Gabriel Caamaño Nelli and Clarita Dasso for their valuable contributions to this work, and to Professor Verónica Ruiz for her diligent proofreading of the article.

References

Akaike, H. 1973. “Information theory and an extension of the maximum likelihood principle.” In Proc., 2nd Int. Symp. on Information Theory and Control, edited by E. B. N. Petrov and F. Csaki, 267. Budapest, Hungary: Akadémiai Kiadó.
Alves da Silva, A. S., B. Stosic, R. S. C. Menezes, and V. P. Singh. 2019. “Comparison of interpolation methods for spatial distribution of monthly precipitation in the State of Pernambuco, Brazil.” J. Hydrol. Eng. 24 (3): 04018068. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001743.
Anselin, L. 1995. “Local indicators of spatial association—LISA.” Geog. Anal. 27 (2): 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x.
Ball, J. E., M. K. Babister, R. Nathan, P. E. Weinmann, W. Weeks, M. Retallick, and I. Testoni. 2016. Australian rainfall and runoff: A guide to flood estimation. Barton, Australia: Institution of Engineers, Australia.
Baraquet, M. M. 2018. “Efectos de la variabilidad climática en la predicción de lluvias para diseño en la provincia de Córdoba.” M.S. thesis, Post-Grade Dept. of Faculty of Exact, Physical and Natural Sciences, National Univ. of Córdoba.
Barros, V., J. Boninsegna, I. Camilloni, M. Chidiak, G. Magrín, and M. Rusticucci. 2015. “Climate change in Argentina: Trends, projections, impacts and adaptation.” Wiley Interdiscip. Rev. Clim. Change 6 (2): 151–169. https://doi.org/10.1002/wcc.316.
Bazzano, F. M. 2019. “Predicción de lluvias máximas para diseño hidrológico. Desarrollo Experimental en la provincia de Tucumán.” Ph.D. thesis, Post-Grade Dept. of Faculty of Exact Sciences and Technology, National Univ. of Tucumán.
Bianchi, A. R., and S. A. Cravero. 2010. Atlas climático digital de la República Argentina. Salta, Argentina: Instituto Nacional de Tecnología Agropecuaria.
Blanchet, J., E. Paquet, P. V. Ayar, and D. Penot. 2019. “Mapping rainfall hazard based on rain gauge data: An objective cross-validation framework for model selection.” Hydrol. Earth Syst. Sci. 23 (2): 829–849. https://doi.org/10.5194/hess-23-829-2019.
Boyina, R., G. Catts, S. Smith, and H. Devine. 2017. “Hydrologic web-mapping application of hofman forest: GIS.” J. Hydrol. Eng. 22 (5): E5015006. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001285.
Caamaño Nelli, G., and C. Dasso. 2003. Lluvias de Diseño: Conceptos Técnicas y Experiencias. Córdoba, Argentina: Ed. Universitas.
Caamaño Nelli, G., and C. García. 1998. “Precipitación Máxima Probable en 24 horas: Ensayo en el Noreste de Córdoba, Argentina.” Cuadernos del Curiham 4 (2): 13–26.
Casas, M., M. Herrero, M. Ninye, X. Pons, R. Rodriguez, and A. Riusb (2007). “Analysis and objective mapping of extreme daily.” Int. J. Climatol. 27(3): 399–409.
Catalini, C., G. Caamaño Nelli, and C. Dasso. 2011. Desarrollos y Aplicaciones sobre Lluvias de Diseño en Argentina. Saarbrüken, Alemania: Lap Lambert Publishing GMBH & Co. KG.
Catalini, C. G., A. Maidah, C. M. García, and G. E. Caamaño Nelli. 2010. “Mapas digitales de isohietas de lluvias máximas diarias para la provincia de Córdoba.” In Proc., I Congreso Internacional de Hidrología de Llanuras. Azul, Argentina: Instituto de Hidrología de Llanuras “Dr. Eduardo Jorge Usunoff”.
Chow, V., D. Maidment, and L. Mays. 1988. Applied hydrology: Water resources handbook. New York: Mc Graw-Hill.
Chow, V. T. 1951. “A general formula for hydrologic frequency analysis.” Trans. Am. Geophys. Union 32 (2): 231–237. https://doi.org/10.1029/TR032i002p00231.
González-Álvarez, A., O. Viloria-Marimón, O. Coronado-Hernández, A. Vélez-Pereira, K. Tesfagiorgis, and J. Coronado-Hernández. 2019. “Isohyetal maps of daily maximum rainfall for different return periods for the Colombian Caribbean region.” Water 11 (2): 358. https://doi.org/10.3390/w11020358.
Goovaerts, P. 2000. “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall.” J. Hydrol. 228 (1–2): 113–129. https://doi.org/10.1016/S0022-1694(00)00144-X.
Guillén, N. 2014. “Estudios avanzados para el diseño hidrológico e hidráulico de infraestructura hídrica.” M.S. thesis, Post-Grade Dept. of Faculty of Exact, Physical and Natural Sciences, National Univ. of Córdoba.
Hershfield, D. M. 1961. “Estimating the probable maximum precipitation.” J. Hydraul. Div. 87 (5): 99–106.
Hershfield, D. M. 1965. “Method for estimating probable maximum precipitation.” J. Am. Water Works Assn. 57 (8): 965–972. https://doi.org/10.1002/j.1551-8833.1965.tb01486.x.
Hershfield, D. M. 1981. “The magnitude of hydrological frequency factor in maximum rainfall estimation.” Hydrol. Sci. J. 26 (2): 171–177. https://doi.org/10.1080/02626668109490874.
INA-CIRSA (Instituto Nacional del Agua–Centro de la Región Semiárida). n.d. Threat assessment system. Buenos Aires, Argentina: INA-CIRSA.
Instituto Nacional de Tecnología Agropecuaria. Ministerio de Agricultura, Ganadería y Pesca de Argentina. n.d. Sistema de información y Gestión Agrometeorológica. Buenos Aires, Argentina: Ministerio de Agricultura, Ganadería y Pesca de Argentina.
Journel, A., and C. Huijbregts. 1978. Mining geostatistics. London: Academic Press.
Kendall, M. G. 1975. Rank correlation methods. London: Charles Griffin.
Keskin, M., A. Dogru, F. Balcik, and C. Goksel. 2015. “Comparing spatial interpolation methods for mapping meteorological data in Turkey.” In Energy systems and management, 33–42. Cham, Switzerland: Springer.
Mair, A., and A. Fares. 2011. “Comparison of rainfall interpolation methods in a mountainous region of a tropical island.” J. Hydrol. Eng. 16 (4): 371–383. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000330.
Mann, H. B. 1945. “Nonparametric test against trend.” Econometrica 13 (3): 245–259. https://doi.org/10.2307/1907187.
Matney, J., S. Supak, and W. Slocumb. 2019. “From GIS as a service to the geospatial blockchain: The future of the intelligent web mapping.” Environments 12 (2): 12.
Ministerio de Agricultura, Ganadería y Pesca Argentina. n.d. Datos abiertos. Buenos Aires, Argentina: Ministerio de Agricultura, Ganadería y Pesca de Argentina.
Moran, P. 1948. “The interpretation of statistical maps.” J. R. Stat. Soc. Ser. B 10 (2): 243–251. https://doi.org/10.1111/j.2517-6161.1948.tb00012.x.
Nakayama, Y., K. Nakamura, H. Saito, and R. Fukumoto. 2017. “A web GIS framework for participatory sensing service: An open source-based implementation.” Geosciences 7 (2): 22. https://doi.org/10.3390/geosciences7020022.
Nikulin, M. S. 1973. “Chi-square test for continuous distributions with scale and shift parameters.” Theory Probab. Appl. 18 (3): 559–568. https://doi.org/10.1137/1118069.
NOAA (National Oceanographic and Atmospheric Administration). 2004. Atlas 14: Precipitation-frequency atlas of the United States. Silver Spring, MD: National Weather Service and University of Alaska Fairbanks, Water and Environmental Research Center.
Oliver, M., and R. Webster. 2015. Basic steps in geostatistics: The variogram and kriging. New York: Springer.
Olmos, L., J. Ibañez, and H. D. Farias. 2010. “Estudio regional de las lluvias máximas diarias. Aplicación a la Llanura Chaqueña Argentina.” In Proc., XXII Hydraulics Latinoamerican Congress. Beijing: Internacional de Ingeniería e Investigaciones Hidráulicas.
Prudhomme, C. 1999. “Mapping a statistic of extreme rainfall in a mountainous region.” Phys. Chem. Earth Part B 24 (1–2): 79–84. https://doi.org/10.1016/S1464-1909(98)00015-X.
Rahman, M., S. Sarkar, M. Najafi, and R. K. Rai. 2013. “Regional extreme rainfall mapping for Bangladesh using L-moment technique.” J. Hydrol. Eng. 18 (5): 603–615. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000663.
Rülhe, F. G. 1966. Determinación del derrame máximo superficial de las cuencas imbríferas. Buenos Aires, Argentina: La Ingeniería.
Secretaría de Infraestructura y Política Hídrica. Ministerio de Obras Públicas de Argentina. n.d. Sistema Nacional de Información Hídrica. Buenos Aires, Argentina: Ministerio de Obras Públicas de Argentina.
Simonovic, S. P., A. Schardong, D. Sandink, and R. Srivastav. 2016. “A web-based tool for the development of intensity duration frequency curves under changing climate.” Environ. Modell. Software 81: 136–153. https://doi.org/10.1016/j.envsoft.2016.03.016.
Szolgay, J., J. Parajka, S. Kohnová, and K. Hla. 2009. “Comparison of mapping approaches of design annual maximum daily precipitation.” Atmos. Res. 92 (3): 289–307. https://doi.org/10.1016/j.atmosres.2009.01.009.
Van de Vyver, H. 2012. “Spatial regression models for extreme precipitation in Belgium.” Water Resour. Res. 48 (9): 1–17. https://doi.org/10.1029/2011WR011707.
Vicente-Serrano, S., M. Saz-Sanchez, and J. Cuadrat. 2003. “Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature.” Clim. Res. 24 (2): 161–180. https://doi.org/10.3354/cr024161.
Wald, A., and J. Wolfowitz. 1943. “An exact test for randomness in the non-parametric case based on serial correlation.” Ann. Math. Stat. 14 (4): 378–388. https://doi.org/10.1214/aoms/1177731358.
Wilcoxon, F. 1945. “Individual comparisons by ranking methods.” Biom. Bull. 1 (6): 80–83. https://doi.org/10.2307/3001968.
WMO (World Meteorological Organization). 2009. Manual for estimation of probable maximum precipitation. Geneva: WMO.
Zamanillo, E. A., et al. 2009. Procedimientos para la estimación de tormentas de diseño para la provincia de Entre Ríos. Buenos Aires, Argentina: Universidad Tecnológica Nacional.
Zhang, F., S. Zhong, Z. Yang, C. Sun, and Q. Huang. 2016. “Spatial estimation of mean annual precipitation (1951–2012) in mainland China based on collaborative kriging interpolation.” In Proc., Geo-Informatics in Resource Management and Sustainable Ecosystem, 663–672. Berlin: Springer.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 7July 2021

History

Received: Jul 3, 2020
Accepted: Dec 21, 2020
Published online: Apr 21, 2021
Published in print: Jul 1, 2021
Discussion open until: Sep 21, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Carlos Gastón Catalini, Ph.D. https://orcid.org/0000-0002-7453-8378
Professor, National Institute of Water–Semi-Arid Region Center (INA CIRSA), Catholic Univ. of Córdoba, Córdoba 5000, Argentina. ORCID: https://orcid.org/0000-0002-7453-8378
Nicolás Federico Guillen, Ph.D. https://orcid.org/0000-0002-7971-5484
Professor, Faculty of Exact, Physical and Natural Science, National Univ. of Córdoba (FCEFyN-UNC), Córdoba 5000, Argentina. ORCID: https://orcid.org/0000-0002-7971-5484
Professor, Faculty of Exact Sciences and Technology, Physics Institute of Northwestern Argentina (INFINOA CONICET/UNT), National Univ. of Tucumán (FACEyT-UNT), Tucumán 4000, Argentina (corresponding author). ORCID: https://orcid.org/0000-0003-1701-8648. Email: [email protected]
Carlos Marcelo García, Ph.D.
Professor, Faculty of Exact, Physical and Natural Science, Institute for Advanced Studies for Engineering and Technology (IDIT CONICET/UNC), National Univ. of Córdoba (FCEFyN-UNC), Córdoba 5000, Argentina.
María Magdalena Baraquet
Professor, Faculty of Exact, Physical and Natural Science, Institute for Advanced Studies for Engineering and Technology (IDIT CONICET/UNC), National Univ. of Córdoba (FCEFyN-UNC), Córdoba 5000, Argentina.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Spatiotemporal Variations and Climatological Trends in Precipitation Indices in Shaanxi Province, China, Atmosphere, 10.3390/atmos13050744, 13, 5, (744), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share