Technical Papers
Feb 2, 2021

Gauging the Ungauged: Regionalization of Flow Indices at Grid Level

This article has been corrected.
VIEW CORRECTION
Publication: Journal of Hydrologic Engineering
Volume 26, Issue 4

Abstract

Despite advances in data collection and modeling, there still remains a significant gap in predicting flows in ungauged locations. This study presents an approach for using gridded data to regionalize flow indices (long-term average streamflows and flows that are equaled or exceeded for 95% of the time) along an entire streamflow network grid. The methodology is based on using the Terrain Analysis Using Digital Elevation Model (TauDEM) toolset to obtain input variables for the regionalization model as averaged to the catchment area of each pixel in the streamflow network grid. The variables used as input for the regionalization regression were the catchment area of each pixel in the streamflow network grid, average slope, annual rainfall, and annual evapotranspiration of the corresponding catchment area. These variables were downscaled to the resolution of the Multi-Error-Removed Improved-Terrain (MERIT) digital elevation model (DEM) (90×90  m). The result was a 90×90-m stream network grid with corresponding values for the modeled flow indices. Thus, the use of satellite-derived or gridded products improved the capacity of the grid to capture spatial patterns that fail to be captured in poorly gauged watersheds. The methodology can be adapted to other cases, for example, to model the parameters of hydrological models along the streamflow network grid. The prediction of the streamflow/flow indices over the entire basin can provide water managers with greater confidence in granting water rights and in sustainably managing the resources in ungauged catchments.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data used and code generated during the study are available from the corresponding author upon request.

Acknowledgments

This study was financed in part by the Coordination of Improvement of Higher Education Personnel (CAPES) Finance Code 001 and by the National Council for Scientific and Technological Development (CNPq) Grant No. 142273/2019-8.

References

Althoff, D., S. H. B. Dias, R. Filgueiras, and L. N. Rodrigues. 2020a. “ETo-Brazil: A daily gridded reference evapotranspiration data set for Brazil—Repository.” Water Resour. Res. 56 (7): e2020WR027562. https://doi.org/10.1029/2020WR027562.
Althoff, D., S. H. B. Dias, R. Filgueiras, and L. N. Rodrigues. 2020b. “ETo-Brazil: A daily gridded reference evapotranspiration data set for Brazil (2000–2018).” Water Resour. Res. 56 (7): e2020WR027562. https://doi.org/10.1029/2020WR027562.
ANA (Agência Nacional de Águas). 2020a. “HidroWeb: Sistema de informações hidrológicas.” Accessed September 23, 2020. http://www.snirh.gov.br/hidroweb/.
ANA (Agência Nacional de Águas). 2020b. “Portal de metadados geoespaciais.” Accessed September 23, 2020. https://metadados.snirh.gov.br/geonetwork/.
Araujo, F. C., E. L. Mello, G. M. Gollin, L. E. Quadros, and B. M. Gomes. 2018. “Streamflow regionalization in Piquiri River Basin.” Engenharia Agrícola 38 (1): 22–31. https://doi.org/10.1590/1809-4430-eng.agric.v38n1p22-31/2018.
Arsenault, R., and F. Brissette. 2016. “Analysis of continuous streamflow regionalization methods within a virtual setting.” Hydrol. Sci. J. 61 (15): 2680–2693. https://doi.org/10.1080/02626667.2016.1154557.
Beck, H. E., M. Pan, P. Lin, J. Seibert, A. I. Dijk, J. M. van, and E. F. Wood. 2020. “Global fully distributed parameter regionalization based on observed stream flow from 4,229 headwater catchments.” J. Geophys. Res.: Atmos. 125 (17): e2019JD031485. https://doi.org/10.1029/2019JD031485.
Carvalho, R. C. D., and A. Magrini. 2006. “Conflicts over water resource management in Brazil: A case study of inter-basin transfers.” Water Resour. Manage. 20 (2): 193–213. https://doi.org/10.1007/s11269-006-7377-3.
Castiglioni, S., A. Castellarin, and A. Montanari. 2009. “Prediction of low-flow indices in ungauged basins through physiographical space-based interpolation.” J. Hydrol. 378 (3): 272–280. https://doi.org/10.1016/j.jhydrol.2009.09.032.
Chen, L., and L. Wang. 2018. “Recent advance in earth observation big data for hydrology.” Big Earth Data 2 (1): 86–107. https://doi.org/10.1080/20964471.2018.1435072.
Chen, Y., and D. Han. 2016. “Big data and hydroinformatics.” J. Hydroinf. 18 (4): 599–614. https://doi.org/10.2166/hydro.2016.180.
Chou, S. C., et al. 2014. “Assessment of climate change over South America under RCP 4.5 and 8.5 downscaling scenarios.” Am. J. Clim. Change 3 (5): 512–527. https://doi.org/10.4236/ajcc.2014.35043.
Devia, G. K., B. P. Ganasri, and G. S. Dwarakish. 2015. “A review on hydrological models.” Aquat. Procedia 4: 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126.
Elesbon, A. A. A., D. D. Silva, G. C. Sediyama, H. A. S. Guedes, C. A. A. S. Ribeiro, and C. B. Ribeiro. 2015. “Multivariate statistical analysis to support the minimum stream flow regionalization.” Engenharia Agrícola 35 (5): 838–851. https://doi.org/10.1590/1809-4430-Eng.Agric.v35n5p838-851/2015.
Erazo, B., L. Bourrel, F. Frappart, O. Chimborazo, D. Labat, L. Dominguez-Granda, D. Matamoros, and R. Mejia. 2018. “Validation of satellite estimates (Tropical Rainfall Measuring Mission, TRMM) for rainfall variability over the Pacific slope and coast of Ecuador.” Water 10 (2): 213. https://doi.org/10.3390/w10020213.
Gadelha, A. N., V. H. R. Coelho, A. C. Xavier, L. R. Barbosa, D. C. D. Melo, Y. Xuan, G. J. Huffman, W. A. Petersen, and C. Almeida. 2019. “Grid box-level evaluation of IMERG over Brazil at various space and time scales.” Atmos. Res. 218 (Apr): 231–244. https://doi.org/10.1016/j.atmosres.2018.12.001.
Getirana, A. C. V., V. Malta, and J. P. S. de Azevedo. 2008. “Decision process in a water use conflict in Brazil.” Water Resour. Manage. 22 (1): 103–118. https://doi.org/10.1007/s11269-006-9146-8.
Gupta, H. V., H. Kling, K. K. Yilmaz, and G. F. Martinez. 2009. “Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling.” J. Hydrol. 377 (1): 80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003.
Hijmans, R. J., et al. 2018. Raster: Geographic data analysis and modeling. Chicago: Institute for Mathematics Applied Geosciences.
Hrachowitz, M., et al. 2013. “A decade of predictions in ungauged basins (PUB)—A review.” Hydrol. Sci. J. 58 (6): 1198–1255. https://doi.org/10.1080/02626667.2013.803183.
Huffman, G. J., D. T. Bolvin, D. Braithwaite, K. Hsu, R. Joyce, C. Kidd, E. J. Nelkin, S. Sorooshian, J. Tan, and P. Xie. 2019. “Integrated multi-satellite retrievals for GPM (IMERG).” In Algorithm theoretical basis document, 38. Washington, DC: Natioanl Aeronautics and Space Administration.
Jiang, D., and K. Wang. 2019. “The role of satellite-based remote sensing in improving simulated streamflow: A review.” Water 11 (8): 1615. https://doi.org/10.3390/w11081615.
Kocaguneli, E., and T. Menzies. 2013. “Software effort models should be assessed via leave-one-out validation.” J. Syst. Softw. 86 (7): 1879–1890. https://doi.org/10.1016/j.jss.2013.02.053.
Köppen, W. 1936. “Das geographische system der klimate.” In Handbuch der klimatologie, 1–44. Berlin: Gebrüder Borntraeger.
Krause, P., D. P. Boyle, and F. Bäse. 2005. “Comparison of different efficiency criteria for hydrological model assessment.” Adv. Geosci. 5: 89–97. https://doi.org/10.5194/adgeo-5-89-2005.
Kunnath-Poovakka, A., D. Ryu, L. J. Renzullo, and B. George. 2016. “The efficacy of calibrating hydrologic model using remotely sensed evapotranspiration and soil moisture for stream flow prediction.” J. Hydrol. 535 (Apr): 509–524. https://doi.org/10.1016/j.jhydrol.2016.02.018.
Legates, D. R., and G. J. McCabe. 1999. “Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation.” Water Resour. Res. 35 (1): 233–241. https://doi.org/10.1029/1998WR900018.
Lopes, T. R., C. A. Zolin, G. Prado, J. Paulino, F. T. Almeida, T. R. Lopes, C. A. Zolin, G. Prado, J. Paulino, and F. T. Almeida. 2017. “Regionalization of maximum and minimum flow in the Teles Pires Basin, Brazil.” Engenharia Agrícola 37 (1): 54–63. https://doi.org/10.1590/1809-4430-eng.agric.v37n1p54-63/2017.
Maneta, M. P., M. Torres, W. W. Wallender, S. Vosti, M. Kirby, L. H. Bassoi, and L. N. Rodrigues. 2009. “Water demand and flows in the São Francisco River Basin (Brazil) with increased irrigation.” Agric. Water Manage. 96 (8): 1191–1200. https://doi.org/10.1016/j.agwat.2009.03.008.
Mimikou, M., and S. Kaemaki. 1985. “Regionalization of flow duration characteristics.” J. Hydrol. 82 (1–2): 77–91. https://doi.org/10.1016/0022-1694(85)90048-4.
Nash, J. E., and J. V. Sutcliffe. 1970. “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol. 10 (3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
Novaes, L. F. F. Pruski, D. O. Queiroz, R. Rodriguez, D. Silva, and M. M. Ramos. 2007. “Avaliação do Desempenho de Cinco Metodologias de Regionalização de Vazões.” Revista Brasileira de Recursos Hídricos 12 (2): 51–61. https://doi.org/10.21168/rbrh.v12n2.p51-61.
Oliveira, P. T. S., M. A. Nearing, M. S. Moran, D. C. Goodrich, E. Wendland, and H. V. Gupta. 2014. “Trends in water balance components across the Brazilian Cerrado.” Water Resour. Res. 50 (9): 7100–7114. https://doi.org/10.1002/2013WR015202.
Pagliero, L., F. Bouraoui, J. Diels, P. Willems, and N. McIntyre. 2019. “Investigating regionalization techniques for large-scale hydrological modelling.” J. Hydrol. 570 (Mar): 220–235. https://doi.org/10.1016/j.jhydrol.2018.12.071.
Pereira, S. B., F. F. Pruski, D. D. Silva, and M. M. Ramos. 2007. “Estudo do comportamento hidrológico do Rio São Francisco e seus principais afluentes.” Revista Brasileira de Engenharia Agrícola e Ambiental 11 (6): 615–622. https://doi.org/10.1590/S1415-43662007000600010.
Pruski, F. F., A. Nunes, P. L. Pruski, and R. Rodriguez. 2013. “Improved regionalization of streamflow by use of the streamflow equivalent of precipitation as an explanatory variable.” J. Hydrol. 476 (Jan): 52–71. https://doi.org/10.1016/j.jhydrol.2012.10.005.
Pruski, F. F., R. Rodriguez, P. L. Pruski, A. Nunes, F. S. Rego, F. F. Pruski, R. Rodriguez, P. L. Pruski, A. Nunes, and F. S. Rego. 2016. “Extrapolation of regionalization equations for long-term average flow.” Engenharia Agrícola 36 (5): 830–838. https://doi.org/10.1590/1809-4430-Eng.Agric.v36n5p830-838/2016.
Pushpalatha, R., C. Perrin, N. Le Moine, T. Mathevet, and V. Andréassian. 2011. “A downward structural sensitivity analysis of hydrological models to improve low-flow simulation.” J. Hydrol. 411 (1–2): 66–76. https://doi.org/10.1016/j.jhydrol.2011.09.034.
Razavi, T., and P. Coulibaly. 2013. “Streamflow prediction in ungauged basins: Review of regionalization methods.” J. Hydrol. Eng. 18 (8): 958–975. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000690.
Rodrigues, L. N., E. E. Sano, T. S. Steenhuis, and D. P. Passo. 2012. “Estimation of small reservoir storage capacities with remote sensing in the Brazilian Savannah region.” Water Resour. Manage. 26 (4): 873–882. https://doi.org/10.1007/s11269-011-9941-8.
Schaefli, B., and H. V. Gupta. 2007. “Do Nash values have value?” Hydrol. Process. 21 (15): 2075–2080. https://doi.org/10.1002/hyp.6825.
Searcy, J. K. 1959. Flow-duration curves. Washington, DC: US Government Printing Office Washington.
Silvério, D. V., P. M. Brando, M. N. Macedo, P. S. A. Beck, M. Bustamante, and M. T. Coe. 2015. “Agricultural expansion dominates climate changes in southeastern Amazonia: The overlooked non-GHG forcing.” Environ. Res. Lett. 10 (10): 104015. https://doi.org/10.1088/1748-9326/10/10/104015.
Tan, M. L., and Z. Duan. 2017. “Assessment of GPM and TRMM precipitation products over Singapore.” Remote Sens. 9 (7): 720. https://doi.org/10.3390/rs9070720.
Tarboton, D. G. 2008. Terrain analysis using digital elevation models (TauDEM). Logan, UT: Utah State Univ.
Vezza, P., C. Comoglio, M. Rosso, and A. Viglione. 2010. “Low flows regionalization in north-western Italy.” Water Resour. Manage. 24 (14): 4049–4074. https://doi.org/10.1007/s11269-010-9647-3.
Yamazaki, D. 2018. “MERIT DEM: Multi-error-removed improved-terrain DEM. Dai YAMAZAKI’s website.” Accessed September 23, 2020. http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/.
Yamazaki, D., D. Ikeshima, R. Tawatari, T. Yamaguchi, F. O’Loughlin, J. C. Neal, C. C. Sampson, S. Kanae, and P. D. Bates. 2017. “A high-accuracy map of global terrain elevations.” Geophys. Res. Lett. 44 (11): 5844–5853. https://doi.org/10.1002/2017GL072874.
Zalles, V., et al. 2019. “Near doubling of Brazil’s intensive row crop area since 2000.” Proc. Nat. Acad. Sci. 116 (2): 428–435. https://doi.org/10.1073/pnas.1810301115.
Zhang, Y., et al. 2016. “Multi-decadal trends in global terrestrial evapotranspiration and its components.” Sci. Rep. 6 (Jan): 19124. https://doi.org/10.1038/srep19124.
Zhao, Q., Q. Chen, M. Jiao, P. Wu, X. Gao, M. Ma, and Y. Hong. 2018. “The temporal-spatial characteristics of drought in the Loess Plateau using the remote-sensed TRMM precipitation data from 1998 to 2014.” Remote Sens. 10 (6): 838. https://doi.org/10.3390/rs10060838.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 26Issue 4April 2021

History

Received: Jul 29, 2020
Accepted: Nov 30, 2020
Published online: Feb 2, 2021
Published in print: Apr 1, 2021
Discussion open until: Jul 2, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, Av. Peter Henry Rolfs, s.n., Viçosa, Minas Gerais 36570-900, Brazil (corresponding author). ORCID: https://orcid.org/0000-0001-5390-575X. Email: [email protected]
Rayssa Balieiro Ribeiro [email protected]
Ph.D. Student, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, Av. Peter Henry Rolfs, s.n., Viçosa, Minas Gerais 36570-900, Brazil. Email: [email protected]
Line Neiva Rodrigues [email protected]
Senior Researcher, Brazilian Agricultural Research Corporation (EMBRAPA) Cerrados, BR-020, Km 18, Planaltina 73310-970, DF, Brazil; Postgraduate Adviser, Dept. of Agricultural Engineering, Federal Univ. of Viçosa, Av. Peter Henry Rolfs, s.n., Viçosa, Minas Gerais 36570-900, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share