State-of-the-Art Reviews
Sep 25, 2020

PMP and Climate Variability and Change: A Review

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 12

Abstract

A state-of-the-art review on the probable maximum precipitation (PMP) as it relates to climate variability and change is presented. The review consists of an examination of the current practice and the various developments published in the literature. The focus is on relevant research where the effect of climate dynamics on the PMP are discussed, as well as statistical methods developed for estimating very large extreme precipitation including the PMP. The review includes interpretation of extreme events arising from the climate system, their physical mechanisms, and statistical properties, together with the effect of the uncertainty of several factors determining them, such as atmospheric moisture, its transport into storms and wind, and their future changes. These issues are examined as well as the underlying historical and proxy data. In addition, the procedures and guidelines established by some countries, states, and organizations for estimating the PMP are summarized. In doing so, attention was paid to whether the current guidelines and research published literature take into consideration the effects of the variability and change of climatic processes and the underlying uncertainties.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

No data, models, or code were generated or used during the study.

Acknowledgments

The authors would like to acknowledge the support of the Global Water Futures Program and the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2019-06894). The fourth author acknowledges the support of the Spanish Ministry of Science and Innovation, Project TETISCHANGE (RTI2018-093717-B-100). The first author appreciates the continuous support from the Scott College of Engineering of Colorado State University.

References

Abbs, D. 1999. “A numerical modeling study to investigate the assumptions used in the calculation of probable maximum precipitation.” Water Resour. Res. 35 (3): 785–796. https://doi.org/10.1029/1998WR900013.
Alexander, G. N. 1963. “Using the probability of storm transposition for estimating the frequency of rare floods.” J. Hydrol. 1 (1): 46–57. https://doi.org/10.1016/0022-1694(63)90032-5.
Alias, N. E., P. Luo, and K. Takara. 2013. “Probable maximum precipitation using statistical method for the Yodo River basin.” J. Jpn. Soc. Civ. Eng. Ser. B1 (Hydraul. Eng.) 69 (4): I_157–I_162. https://doi.org/10.2208/jscejhe.69.I_157.
ANCOLD (Australian National Commission on Large Dams). 2000. Guidelines on selection of acceptable flood capacity for dams. Tasmania, Australia: ANCOLD.
Balkema, A. A., and L. de Haan. 1974. “Residual life time at great age.” Ann. Probab. 2 (5): 792–804. https://doi.org/10.1214/aop/1176996548.
Beauchamp, J. 2010. “Estimation d’une PMP et d’une CMP d’un bassin versant septentional, en contexte de changements climatiques.” Ph.D. dissertation, École de Technologie Supérieure, Université du Québec.
Ben Alaya, M. A., F. Zwiers, and X. Zhang. 2018. “Probable maximum precipitation: Its estimation and uncertainty quantification using bivariate extreme value analysis.” J. Hydrometeorol. 19 (4): 679–694. https://doi.org/10.1175/JHM-D-17-0110.1.
Benson, M. A. 1973. “Thoughts on the design of design floods. Floods and droughts.” In Proc., 2nd Int. Symp. in Hydrology, 27–33. Fort Collins, CO: Water Resources Publications.
BMA (Bureau of Meteorology of Australia). 2009. Climate change and probable maximum precipitation. Melbourne, Australia: BMA.
Botero, B. A., and F. Frances. 2010. “Estimation of high return period flood quantiles using additional non-systematic information with upper bounded statistical models.” Hydrol. Earth Syst. Sci. 14 (12): 2617–2628. https://doi.org/10.5194/hess-14-2617-2010.
Canadian Dam Association. 2013. “Dam safety guidelines.” Accessed August 24, 2020. https://www.cda.ca/EN/Publications_Pages/Dam_Safety_Publications.aspx.
Casas, C. M., R. Rodríguez, R. Nieto, and A. Redaño. 2008. “The estimation of probable maximum precipitation, the case of Catalonia.” Ann. N.Y. Acad. Sci. 1146 (1): 291–302. https://doi.org/10.1196/annals.1446.003.
Casas, M. C., R. Rodríguez, M. Prohom, A. Gazquez, and A. Redaño. 2011. “Estimation of the probable maximum precipitation in Barcelona (Spain).” Int. J. Climatol. 31 (9): 1322–1327. https://doi.org/10.1002/joc.2149.
Casas-Castillo, M. C., R. Rodríguez-Solà, X. Navarro, B. Russo, A. Lastra, P. González, and A. Redaño. 2016. “On the consideration of scaling properties of extreme rainfall in Madrid (Spain) for developing a generalized intensity-duration-frequency equation and assessing probable maximum precipitation estimates.” Theor. Appl. Climatol. 131 (1–2): 573–580. https://doi.org/10.1007/s00704-016-1998-0.
Castellarin, A., R. Merz, and G. Blöschl. 2009. “Probabilistic envelope curves for extreme rainfall events.” J. Hydrol. 378 (3): 263–271. https://doi.org/10.1016/j.jhydrol.2009.09.030.
CEH (Centre for Ecology and Hydrology). 2016. Flood estimation handbook. Wallingford, UK: CEH.
Central Water Commission. 2019. Guidelines for assessing and managing risks associated with dams. Doc. No. CDSO_GUD_DS_10_v1.0. New Delhi, India: Ministry of Water Resources.
Chavan, S. R., and V. V. Srinivas. 2017. “Regionalization based envelope curves for PMP estimation by Hershfield method.” Int. J. Climatol. 37 (10): 3767–3779. https://doi.org/10.1002/joc.4951.
Chen, X., and F. Hossain. 2018. “Understanding model-based probable maximum precipitation estimation as a function of location and season from atmospheric reanalysis.” J. Hydrometeorol. 19 (2): 459–475. https://doi.org/10.1175/JHM-D-17-0170.1.
Chen, X., and F. Hossain. 2019. “Understanding future safety of dams in a changing climate.” Bull. Am. Meteor. Soc. 100 (8): 1395–1404. https://doi.org/10.1175/BAMS-D-17-0150.1.
Chow, V. T. 1951. “A general formula for hydrologic frequency analysis.” Trans. Am. Geophys. Union 32 (2): 231–237. https://doi.org/10.1029/TR032i002p00231.
Chow, V. T., D. R. Maidment, and L. W. Mays. 1988. Applied hydrology. New York: McGraw-Hill.
Clark, R. A. 1987. “Hydrologic design criteria and climate variability.” IAHS Publ. 168: 640.
Clavet-Gaumont, J., et al. 2017. “Probable maximum flood in a changing climate: An overview for Canadian basins.” J. Hydrol.: Reg. Stud. 13 (Oct): 11–25. https://doi.org/10.1016/j.ejrh.2017.07.003.
Coles, S. 2001. An introduction to statistical modeling of extreme values. London: Springer.
Cooke, P. 1979. “Statistical inference for bounds of random variables.” Biometrika 66 (2): 367–374. https://doi.org/10.1093/biomet/66.2.367.
Cooley, D. 2009. “Extreme value analysis and the study of climate change.” Clim. Change 97 (1): 77. https://doi.org/10.1007/s10584-009-9627-x.
Corrigan, P., D. D. Fenn, D. R. Kluck, and J. L. Vogel. 1998. Probable maximum precipitation for California—Calculation procedures. Silver Spring, MD: US National Weather Service.
Corrigan, P., D. D. Fenn, D. R. Kluck, and J. L. Vogel. 1999. Probable maximum precipitation for California—Calculation procedures. Silver Spring, MD: US National Weather Service.
Dawdy, D. R., and D. P. Lettenmaier. 1987. “Initiative for risk-based flood design.” J. Hydraul. Eng. 113 (8): 1041–1051. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:8(1041).
Desa, M. N., and P. R. Rakhecha. 2007. “Probable maximum precipitation for 24-h duration over an equatorial region: Part 2-Johor, Malaysia.” Atmos. Res. 84 (1): 84–90. https://doi.org/10.1016/j.atmosres.2006.06.005.
Dettinger, M. 2011. “Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes.” J. Am. Water Resour. Assoc. 47 (3): 514–523. https://doi.org/10.1111/j.1752-1688.2011.00546.x.
Dhar, O. N., A. K. Kulkarni, and P. R. Rakhecha. 1980. “Probable maximum point rainfall estimation for the southern half of the Indian peninsula.” Proc. Indian Acad. Sci. (Earth Planet. Sci.) 90 (1): 39–46. https://doi.org/10.1007/BF02880665.
Diaz, A. J., K. Ishida, M. L. Kavvas, and M. L. Anderson. 2017. “Maximum precipitation estimation for five watersheds in the southern Sierra Nevada.” In Proc., 2017 World Environmental and Water Resources Congress, 331–339. Reston, VA: ASCE. https://doi.org/10.1061/9780784480618.032.
Douglas, E. M., and A. P. Barros. 2003. “Probable maximum precipitation estimation using multifractals: Application in the eastern United States.” J. Hydrometeorol. 4 (6): 1012–1024. https://doi.org/10.1175/1525-7541(2003)004%3C1012:PMPEUM%3E2.0.CO;2.
Dyrrdal, A. V. 2012. Estimation of extreme precipitation in Norway and a summary of the state-of-the-art. Oslo, Norway: Norwegian Meteorological Institute.
El Adlouni, S., T. B. M. Ouarda, X. Zhang, R. Roy, and B. Bobée. 2007. “Generalized maximum likelihood estimators for the nonstationary generalized extreme value model.” Water Resour. Res. 43 (3). https://doi.org/10.1029/2005WR004545.
Elíasson, J. 1994. “Statistical estimates of PMP values.” Nordic Hydrol. 25 (4): 301–312. https://doi.org/10.2166/nh.1994.0010.
Elíasson, J. 1997. “A statistical model for extreme precipitation.” Water Resour. Res. 33 (3): 449–455. https://doi.org/10.1029/96WR03531.
England, J. F., R. D. Jarrett, and J. D. Salas. 2003. “Data-based comparisons of moment estimators using historical and paleoflood data.” J. Hydrol. 278 (1–4): 172–196. https://doi.org/10.1016/50022-1694(03)00141-0.
England, J. F., V. L. Sankovich, and R. J. Caldwell. 2020. Review of probable maximum precipitation procedures and databases used to develop hydrometeorological reports. Washington, DC: Office of Nuclear Regulatory Research.
European Commission. 2007. Directive 2007/60 EC of the European Parliament and of the Council of 23/10/2007 on the assessment and management of flood risk. Luxembourg, Europe: Official Journal of the European Union.
FERC (Federal Energy Regulatory Commission). 2014. “Probabilistic flood hazard analysis.” Chap. 9 in Engineering guidelines risk informed decision making. Washington, DC: FERC.
Fernandes, W., M. Naghettini, and R. Loschi. 2010. “A Bayesian approach for estimating extreme flood probabilities with upper-bounded distribution functions.” Stochastic Environ. Res. Risk Assess. 24 (8): 1127–1143. https://doi.org/10.1007/s00477-010-0365-4.
Fisher, R. A., and L. H. C. Tippett. 1928. “Limiting forms of the frequency distribution of the largest or smallest member of a sample.” Math. Proc. Cambridge Philos. Soc. 24 (2): 180–190. https://doi.org/10.1017/S0305004100015681.
Fontaine, T. A., and K. W. Potter. 1989. “Estimating probabilities of extreme rainfalls.” J. Hydraul. Eng. 115 (11): 1562–1575. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:11(1562).
Foufoula-Georgiou, E. 1989. “A probabilistic storm transposition approach for estimating exceedance probabilities of extreme precipitation depths.” Water Resour. Res. 25 (5): 799–815. https://doi.org/10.1029/WR025i005p00799.
Francés, F. 1998. “Using the TCEV distribution function with systematic and non-systematic data in a regional flood frequency analysis.” Stochastic Hydrol. Hydraul. 12 (4): 267–283. https://doi.org/10.1007/s004770050021.
Francés, F., J. D. Salas, and D. C. Boes. 1994. “Flood frequency analysis with systematic and historical or paleoflood data based on the two-parameter general extreme value models.” Water Resour. Res. 30 (6): 1653–1664. https://doi.org/10.1029/94WR00154.
Fréchet, M. 1927. “Sur la loi de probabilité de l’écart maximum.” Ann. Soc. Polon. Math 6: 93–116.
Gao, M., D. Mo, and X. Wu. 2016. “Nonstationary modeling of extreme precipitation in China.” Atmos. Res. 182 (15): 1–9. https://doi.org/10.1016/j.atmosres.2016.07.014.
García-Marín, A. P., R. Morbidelli, C. Saltalippi, M. Cifrodelli, J. Estévez, and A. Flammini. 2019. “On the choice of the optimal frequency analysis of annual extreme rainfall by multifractal approach.” J. Hydrol. 575 (Aug): 1267–1279. https://doi.org/10.1016/j.jhydrol.2019.06.013.
Gilroy, K. L., and R. H. McCuen. 2012. “A nonstationary flood frequency analysis method to adjust for future climate change and urbanization.” J. Hydrol. 414 (Jan): 40–48. https://doi.org/10.1016/j.jhydrol.2011.10.009.
Groisman, P. Y., R. W. Knight, and O. G. Zolina. 2013. “Recent trends in regional and global intense precipitation patterns.” Clim. Vulnerability 5: 25–55. https://doi.org/10.1016/B978-0-12-384703-4.00501-3.
Gumbel, E. J. 1958. Statistics of extremes. New York: Columbia University Press.
Gupta, V. K. 1972. Transposition of storms for estimating flood probability distributions. Fort Collins, CO: Colorado State Univ.
Hanel, M., T. A. Buishand, and C. A. Ferro. 2009. “A nonstationary index flood model for precipitation extremes in transient regional climate model simulations.” J. Geophys. Res. Atmos. 114 (15). https://doi.org/10.1029/2009JD011712.
Hershfield, D. M. 1961. “Estimating the probable maximum precipitation.” Proc. ASCE J. Hydraul. Div. 87 (5): 99–116.
Hershfield, D. M. 1965. “Method for estimating probable maximum rainfall.” J. Am. Water Works Assn. 57 (8): 965–972. https://doi.org/10.1002/j.1551-8833.1965.tb01486.x.
Hershfield, D. M. 1977. “Some tools for hydrometeorologists.” In Proc., 2nd Conf. on Hydrometeorology. Boston: American Meteorological Society.
Ho, F. P., and J. T. Riedel. 1980. Seasonal variation of 10-square-mile probable maximum precipitation estimates, United States east of the 105th meridian. Silver Spring, MD: National Weather Service, National Oceanic and Atmospheric Administration, US Dept. of Commerce.
Hosking, J. R. M., and J. R. Wallis. 1997. Regional frequency analysis—An approach based on L-moments. Cambridge, UK: Cambridge University Press.
Hosking, J. R. M., J. R. Wallis, and E. F. Wood. 1985. “Estimation of the generalized extreme-value distribution by the method of probability-weighted moments.” Technometrics 27 (3): 251–261. https://doi.org/10.1080/00401706.1985.10488049.
Houghton, J. C. 1978. “Birth of a parent: The Wakeby distribution for modeling flood flows.” Water Resour. Res. 14 (6): 1105–1109. https://doi.org/10.1029/WR014i006p01105.
Hubert, P., Y. Tessier, S. Lovejoy, D. Schertzer, F. Schmitt, P. Ladoy, J. P. Carbonnel, S. Violette, and I. Desurosne. 1993. “Multifractals and extreme rainfall events.” Geophys. Res. Lett. 20 (10): 931–934. https://doi.org/10.1029/93GL01245.
Hundecha, Y., A. St-Hilaire, T. Ouarda, S. El Adlouni, and P. Gachon. 2008. “A nonstationary extreme value analysis for the assessment of changes in extreme annual wind speed over the Gulf of St. Lawrence, Canada.” J. Appl. Meteorol. Climatol. 47 (11): 2745–2759. https://doi.org/10.1175/2008JAMC1665.1.
Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson. 2014. “Physically based estimation of maximum precipitation over three watersheds in northern California: Atmospheric boundary condition shifting.” J. Hydrol. Eng. 20 (4): 04014052. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001026.
Ishida, K., M. L. Kavvas, S. Jang, Z. Q. Chen, N. Ohara, and M. L. Anderson. 2015. “Physically based estimation of maximum precipitation over three watersheds in northern California: Relative humidity maximization method.” J. Hydrol. Eng. 20 (10): 04015014. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001175.
Ishida, K., N. Ohara, M. L. Kavvas, Z. Q. Chen, and M. L. Anderson. 2016. “Impact of air temperature on physically-based maximum precipitation estimation through change in moisture holding capacity of air.” J. Hydrol. 556 (Jan): 1050–1063. https://doi.org/10.1016/j.jhydrol.2016.10.008.
Jakob, D., R. Smalley, J. Meighen, B. Taylor, and K. Xuereb. 2008. “Climate change and probable maximum precipitation.” In Proc., Water Down Under, 109–120. Melbourne, Australia: Engineers Australia, Causal Productions.
Jakob, D., R. Smalley, J. Meighen, K. Xuereb, and B. Taylor. 2009. Climate change and probable maximum precipitation. Melbourne, Australia: Australian Government Bureau of Meteorology, Hydrometeorological Advisory Service.
Johnson, K. A., and J. C. Smithers. 2019. “Methods for the estimation of extreme rainfall events.” Water SA 45 (3): 501–512. https://doi.org/10.17159/wsa/2019.v45.i3.6747.
Kanda, J. 1981. “A new value distribution with lower and upper limits for earthquake motions and wind speeds.” Theor. Appl. Mech. 31: 351–360.
Kao, S. C., S. T. DeNeale, and D. B. Watson. 2019. “Hurricane harvey highlights: Need to assess the adequacy of probable maximum precipitation estimation methods.” J. Hydrol. Eng. 24 (4). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001768.
Katz, R. W. 2013. “Statistical methods for nonstationary extremes.” In Extremes in a changing climate, 15–37. New York: Springer.
Katz, R. W., M. B. Parlange, and P. Naveau. 2002. “Statistics of extremes in hydrology.” Adv. Water Resour. 25 (8–12): 1287–1304. https://doi.org/10.1016/S0309-1708(02)00056-8.
Kharin, V. V., F. Zwiers, X. Zhang, and G. C. Hegerl. 2007. “Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations.” J. Clim. 20 (8): 1419–1444. https://doi.org/10.1175/JCLI4066.1.
Kijko, A. 2004. “Estimation of the maximum earthquake magnitude mmax.” Pure Appl. Geophys. 161 (8): 1655–1681. https://doi.org/10.1007/s00024-004-2531-4.
Kim, I. W., J. Oh, S. Woo, and R. H. Kripalani. 2019. “Evaluation of precipitation extremes over the Asian domain: Observation and modelling studies.” Clim. Dyn. 52 (3–4): 1317–1342. https://doi.org/10.1007/s00382-018-4193-4.
Koutsoyiannis, D. 1999. “A probabilistic view of Hershfield’s method for estimating probable maximum precipitation.” Water Resour. Res. 35 (4): 1313–1322. https://doi.org/10.1029/1999WR900002.
Kundzewicz, Z. W., and E. Stakhiv. 2010. “Are climate models ‘ready for prime time’ in water resources management applications, or is more research needed?” Hydrol. Sci. J. 55 (7): 1085–1089. https://doi.org/10.1080/02626667.2010.513211.
Kunkel, K. E., T. R. Karl, D. R. Easterling, K. Redmond, J. Young, X. Yin, and P. Hennon. 2013. “Probable maximum precipitation and climate change.” Geophys. Res. Lett. 40 (7): 1402–1408. https://doi.org/10.1002/grl.50334.
Lan, P., B. Lin, Y. Zhang, and H. Chen. 2017. “Probable maximum precipitation estimation using the revised Km-value method in Hong Kong.” J. Hydrol. Eng. 22 (8): 05017008. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001517.
Langousis, A., D. Veneziano, P. Furcolo, and C. Lepore. 2009. “Multifractal rainfall extremes: Theoretical analysis and practical estimation.” Chaos, Solitons Fractals 39 (3): 1182–1194. https://doi.org/10.1016/j.chaos.2007.06.004.
Leclerc, M., and T. B. Ouarda. 2007. “Non-stationary regional flood frequency analysis at ungauged sites.” J. Hydrol. 343 (3–4): 254–265. https://doi.org/10.1016/j.jhydrol.2007.06.021.
Lee, J., J. Choi, O. Lee, J. Yoon, and S. Kim. 2017. “Estimation of probable maximum precipitation in Korea using a regional climate model.” Water 9: 240. https://doi.org/10.3390/w9040240.
Lenderink, G., and J. Attema. 2015. “A simple scaling approach to produce climate scenarios of local precipitation extremes for the Netherlands.” Environ. Res. Lett. 10 (8): 85001. https://doi.org/10.1088/1748-9326/10/8/085001.
Lepore, C., D. Veneziano, and A. Molini. 2014. “Temperature and cape dependence of rainfall extremes in the eastern United States.” Geophys. Res. Lett. 42 (1): 74–83. https://doi.org/10.1002/2014GL062247.
Lin, B., and J. Vogel. 1993. “A new look at the statistical estimation of PMP.” In Engineering hydrology, 629–634. Reston, VA: ASCE.
López, J., and F. Francés. 2013. “Non-stationary flood frequency analysis in continental Spanish rivers, using climate and reservoir indices as external covariates.” Hydrol. Earth Syst. Sci. 17: 3189–3203. https://doi.org/10.5194/hess-17-3189-2013.
Loriaux, J. M., G. Lenderink, and A. P. Siebesma. 2016. “Peak precipitation intensity in relation to atmospheric conditions and large-scale forcing at midlatitudes.” J. Geophys. Res. Atmos. 121 (10): 5471–5487. https://doi.org/10.1002/2015JD024274.
Machado, M. J., B. A. Botero, J. López, F. Francés, A. Díez-Herrero, and G. Benito. 2015. “Flood frequency analysis of historical flood data under stationary and non-stationary modelling.” Hydrol. Earth Syst. Sci. 19: 2561–2576. https://doi.org/10.5194/hess-19-2561-2015.
Mahoney, K., J. Lukas, and M. Mueller. 2018. “Considering climate change in the estimation of extreme precipitation for dam safety.” In Vol. 6 of Colorado-New Mexico regional extreme precipitation study. Denver: Colorado Division of Water Resources.
Mamoon, A., and A. Rahman. 2014. “Uncertainty in design rainfall estimation: A review.” J. Hydrol. Environ. Res. 2 (1): 65–75.
Markonis, Y., S. M. Papalexiou, M. Martinkova, and M. Hanel. 2019. “Assessment of water cycle intensification over land using a multisource global gridded precipitation data set.” J. Geophys. Res. Atmos. 124 (21): 11175–11187. https://doi.org/10.1029/2019JD030855.
Martins, E. S., and J. R. Stedinger. 2000. “Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data.” Water Resour. Res. 36 (3): 737–744. https://doi.org/10.1029/1999WR900330.
Mathier, L., J.-P. Fortin, B. Bobée, and L. Perreault. 1994. Probable maximum precipitation (PMP) in boreal regions: Phase III: Analysis of rainfall data from automatic stations in Canada. Quebec City, Canada: Institut National de la Recherche Scientifique-Eau.
McKay, G. A. 1965. Statistical estimates of precipitation extremes for the prairie provinces. Regina, SK, Canada: Prairie Farm Rehabilitation Administration.
Mejia, G., and F. Villegas. 1979. “Maximum precipitation deviations in Colombia.” In Proc., 3rd Conf. on Hydrometeorology, 74–76. Boston: America Meteorological Society.
Merz, R., and G. Blöschl. 2008. “Flood frequency hydrology: 1. Temporal, spatial, and causal expansion of information.” Water Resour. Res. 44 (8): W08432. https://doi.org/10.1029/2007WR006744.
Micovic, Z., M. G. Schaefer, and G. H. Taylor. 2015. “Uncertainty analysis for probable maximum precipitation estimates.” J. Hydrol. 521 (Feb): 360–373. https://doi.org/10.1016/j.jhydrol.2014.12.033.
Mínguez, R., F. Méndez, C. Izaguirre, M. Menéndez, and I. J. Losada. 2010. “Pseudo-optimal parameter selection of non-stationary generalized extreme value models for environmental variables.” Environ. Modell. Software 25 (12): 1592–1607. https://doi.org/10.1016/j.envsoft.2010.05.008.
Monette, A., L. Sushama, M. N. Khaliq, R. Laprise, and R. Roy. 2012. “Projected changes to precipitation extremes for northeast Canadian watersheds using a multi-RCM ensemble.” J. Geophys. Res. Atmos. 117 (13): D13106. https://doi.org/10.1029/2012JD017543.
Nathan, R., P. Jordan, M. Scorah, S. Lang, G. Kuczera, M. Schaefer, and E. Weinmann. 2016. “Estimating the exceedance probability of extreme rainfalls up to the probable maximum precipitation.” J. Hyrol. 543: 706–720. https://doi.org/10.1016/j.jhydrol.2016.10.044.
Nathan, R. J., and S. K. Merz. 2001. “Estimation of extreme hydrologic events in Australia: Current practice and research needs.” Paper 13 in Proc., Hydrologic research needs for dam safety, 69–77. Washington, DC: FEMA.
National Research Council. 1988. Estimating probabilities of extreme floods: Methods and recommended research. Washington, DC: National Academies Press. https://doi.org/10.17226/18935.
NERC (Natural Environment Research Council). 1975. Vol. 2 of Flood studies report. London: NERC.
Nobilis, F., T. Haiden, and M. Kerschbaum. 1991. “Statistical considerations concerning probable maximum precipitation (PMP) in the Alpine country of Austria.” Theor. Appl. Climatol. 44 (2): 89–94. https://doi.org/10.1007/BF00867996.
NWS (National Weather Service). 2015. “Regions covered by different NWS PMP documents (as of 2015) (map).” Accessed May 1, 2020. https://www.nws.noaa.gov/oh/hdsc/studies/pmp.html.
Ohara, N., M. L. Kavvas, M. L. Anderson, Z. Q. Chen, and K. Ishida. 2017. “Characterization of extreme storm events using a numerical model–based precipitation maximization procedure in the Feather, Yuba, and American River watersheds in California.” J. Hydrometeorol. 18 (5): 1413–1423. https://doi.org/10.1175/JHM-D-15-0232.1.
Ohara, N., M. L. Kavvas, S. Kure, Z. Q. Chen, S. Jang, and E. Tan. 2011. “Physically based estimation of maximum precipitation over the American River watershed, California.” J. Hydrol. Eng. 16 (4): 351–361. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000324.
Ouranos. 2015. Vers l’adaptation. Synthèse des connaissances sur les changements climatiques au Québec. Édition 2015. Montréal: Ouranos.
Papalexiou, S. M. 2018. “Unified theory for stochastic modelling of hydroclimatic processes: Preserving marginal distributions, correlation structures, and intermittency.” Adv. Water Resour. 115 (May): 234–252. https://doi.org/10.1016/j.advwatres.2018.02.013.
Papalexiou, S. M., A. AghaKouchak, and E. Foufoula-Georgiou. 2018a. “A diagnostic framework for understanding climatology of tails of hourly precipitation extremes in the United States.” Water Resour. Res. 54 (9): 6725–6738. https://doi.org/10.1029/2018WR022732.
Papalexiou, S. M., and D. Koutsoyiannis. 2006. “A probabilistic approach to the concept of probable maximum precipitation.” Adv. Geosci. 7: 51–54. https://doi.org/10.5194/adgeo-7-51-2006.
Papalexiou, S. M., and D. Koutsoyiannis. 2012. “Entropy based derivation of probability distributions: A case study to daily rainfall.” Adv. Water Resour. 45 (Sep): 51–57. https://doi.org/10.1016/j.advwatres.2011.11.007.
Papalexiou, S. M., and D. Koutsoyiannis. 2013. “Battle of extreme value distributions: A global survey on extreme daily rainfall.” Water Resour. Res. 49 (1): 187–201. https://doi.org/10.1029/2012WR012557.
Papalexiou, S. M., and D. Koutsoyiannis. 2016. “A global survey on the seasonal variation of the marginal distribution of daily precipitation.” Adv. Water Resour. 94 (Aug): 131–145. https://doi.org/10.1016/j.advwatres.2016.05.005.
Papalexiou, S. M., D. Koutsoyiannis, and C. Makropoulos. 2013. “How extreme is extreme? An assessment of daily rainfall distribution tails.” Hydrol. Earth Syst. Sci. 17 (2): 851–862. https://doi.org/10.5194/hess-17-851-2013.
Papalexiou, S. M., Y. Markonis, F. Lombardo, A. AghaKouchak, and E. Foufoula-Georgiou. 2018b. “Precise temporal disaggregation preserving marginals and correlations (DiPMaC) for stationary and nonstationary processes.” Water Resour. Res. 54 (10): 7435–7458. https://doi.org/10.1029/2018WR022726.
Papalexiou, S. M., and A. Montanari. 2019. “Global and regional increase of precipitation extremes under global warming.” Water Resour. Res. 55 (6): 4901–4914. https://doi.org/10.1029/2018WR024067.
Parzybok, T. W., and E. M. Tomlinson. 2006. “A new system for analyzing precipitation from storms.” Hydro Rev. 25 (3): 58–65.
Pickands, J., III. 1975. “Statistical inference using extreme order statistics.” Ann. Stat. 3 (1): 119–131. https://doi.org/10.1214/aos/1176343003.
Rakhecha, P. R., N. R. Deshpande, and M. K. Soman. 1992. “Probable maximum precipitation for a 2-day duration over the Indian Peninsula.” Theor. Appl. Climatol. 45 (4): 277–283. https://doi.org/10.1007/BF00865518.
Rakhecha, P. R., and M. K. Soman. 1994. “Estimation of probable maximum precipitation for a 2-day duration: Part 2—North Indian region.” Theor. Appl. Climatol. 49 (2): 77–84. https://doi.org/10.1007/BF00868192.
Rastogi, D., S. C. Kao, M. Ashfaq, R. Mei, E. D. Kabela, S. Gangrade, B. S. Naz, B. L. Preston, N. Singh, and V. G. Ananthara. 2017. “Effects of climate change on probable maximum precipitation: A sensitivity study over the Alabama-Coosa-Tallapoosa River Basin.” J. Geoph. Res. Atmos. 122: 4808–4828. https://doi.org/10.1002/2016JD026001.
Reed, D. W., and E. J. Stewart. 1989. “Focus on rainfall growth estimation.” In Proc., 2nd National Hydrology Symp. Sheffield, UK: British Hydrological Society.
Rezacova, D., P. Pesice, and Z. Sokol. 2005. “An estimation of the probable maximum precipitation for river basins in the Czech Republic.” Atmos. Res. 77 (1–4): 407–421. https://doi.org/10.1016/j.atmosres.2004.10.011.
Rouhani, H., and R. Leconte. 2016. “A novel method to estimate the maximization ratio of the probable maximum precipitation (PMP) using regional climate model output.” Water Resour. Res. 52 (9): 7347–7365. https://doi.org/10.1002/2016WR018603.
Rouhani, H., and R. Leconte. 2020. “Uncertainties of precipitable water calculations for PMP estimates in current and future climates.” J. Hydrol. Eng. 25 (3). https://doi.org/10.1061/(ASCE)HE.1943-5584.0001877.
Rousseau, A. N., I. M. Klein, D. Freudiger, P. Gagnon, A. Frigon, and C. Ratté-Fortin. 2014a. “Development of a methodology to evaluate probable maximum precipitation (PMP) under changing climate conditions: Application to southern Quebec, Canada.” J. Hydrol. 519 (Part D): 3094–3109. https://doi.org/10.1016/j.jhydrol.2014.10.053.
Salas, J. D., G. Gavilan, F. R. Salas, P. Y. Julien, and J. Abdullah. 2014. “Uncertainty of the PMP and PMF.” Chap. 28 in Handbook engineering hydrology, edited by S. Eslamian, 575–603. London: CRC Press.
Salas, J. D., and J. Obeysekera. 2014. “Revisiting the concepts of return period and risk under non-stationary conditions.” J. Hydrol. Eng. 19 (3): 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820.
Salas, J. D., and F. R. Salas. 2016. “Estimating the uncertainty of the PMP.” In Proc., 27th Latin-American Congress of Hydraulics. Santiago del Estero, Argentina: Latin American Division of the International Association for Hydro-Environment Engineering and Research.
Schreiner, L. C., and J. T. Reidel. 1978. Probable maximum precipitation estimates: United States east of 105th meridian. Washington, DC: US National Weather Service.
Serinaldi, F., and C. G. Kilsby. 2014. “Rainfall extremes: Toward reconciliation after the battle of distributions.” Water Resour. Res. 50 (1): 336–352. https://doi.org/10.1002/2013WR014211.
Shepherd, T. G. 2014. “Atmospheric circulation as a source of uncertainty in climate change projections.” Nat. Geosci. 7: 703–708. https://doi.org/10.1038/NGEO2253.
Singh, A., V. P. Singh, and A. R. Byrd. 2018a. “Computation of probable maximum precipitation and its uncertainty.” Int. J. Hydrol. 2 (4): 504–514. https://doi.org/10.15406/ijh.2018.02.00118.
Singh, A., V. P. Singh, and A. R. Byrd. 2018b. “Risk analysis of probable maximum precipitation estimates.” Int. J. Hydrol. 2 (4): 411–422. https://doi.org/10.15406/ijh.2018.02.00105.
Siriwardena, L., and P. E. Weinmann. 1998. A technique to interpolate frequency curves between frequent events and probable maximum events. Clayton, VIC, Australia: Cooperative Research Centre for Catchment Hydrology, Monash Univ.
Slade, J. 1936. “An asymmetric probability function.” Trans. Am. Soc. Civ. Eng. 101 (1): 35–61.
SPANCOLD (Spanish National Commission on Large Dams). 2012. Vol. 1 of Risk analysis applied to dam safety, technical guide on operation of dams and reservoirs. Madrid, Spain: SPANCOLD.
Stedinger, J. R., and T. A. Cohn. 1986. “Flood frequency analysis with historical and paleoflood information.” Water Resour. Res. 22 (5): 785–793. https://doi.org/10.1029/WR022i005p00785.
Stratz, S. A., and F. Hossain. 2014. “Probable maximum precipitation in a changing climate: Implications for dam design.” J. Hydrol. Eng. 19 (12): 06014006. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001021.
Su, C., and X. Chen. 2019. “Covariates for nonstationary modeling of extreme precipitation in the Pearl River basin, China.” Atmos. Res. 229 (15): 224–239. https://doi.org/10.1016/j.atmosres.2019.06.017.
Svensson, C., and D. A. Jones. 2010. “Review of rainfall frequency estimation methods.” J. Flood Risk Manage. 3 (4): 296–313. https://doi.org/10.1111/j.1753-318X.2010.01079.x.
Takara, K., and J. Loebis. 1996. “Frequency analysis introducing probable maximum hydrologic events: Preliminary studies in Japan and in Indonesia.” In Proc., Int. Symp. on Comparative Research on Hydrology and Water Resources in Southeast Asia and the Pacific, 67–76. Yogyakarta, Indonesia: Indonesian National Committee for International Hydrology Programme.
Takara, K., and K. Tosa. 1999. “Storm and flood frequency analysis using PMP/PMF estimates.” In Proc., Int. Symp. on Floods and Droughts, Nanjing, China, 7–17. Paris: UNESCO.
Thuy, L. T. T., S. Kawagoe, and R. Sarukkalige. 2019. “Estimation of probable maximum precipitation at three provinces of northeast Vietnam using historical data and future climate change scenarios.” J. Hydrol. Regional Stud. 23 (Jun): 1–21. https://doi.org/10.1016/j.ejrh.2019.100599.
Tomlinson, E., and W. Kappel. 2009. “Dam safety: Revisiting PMPs.” Hydro Rev. 28 (7).
Toride, K., D. L. Cawthorne, K. Ishida, M. L. Kavvas, and M. L. Anderson. 2018. “Long-term trend analysis on total and extreme precipitation over Shasta Dam watershed.” Sci. Total Environ. 626 (Jun): 244–254. https://doi.org/10.1016/j.scitotenv.2018.01.004.
Toride, K., K. Ishida, L. M. Kavvas, and M. L. Anderson. 2017. “Maximum precipitation estimation over Shasta Dam watershed by means of atmospheric boundary condition shifting method.” In Proc., 2017 World Environmental and Water Resources Congress, 340–346. Reston, VA: ASCE. https://doi.org/10.1061/9780784480618.033.
Towler, E., B. Rajagopalan, E. Gilleland, R. S. Summers, D. Yates, and R. W. Katz. 2010. “Modeling hydrologic and water quality extremes in a changing climate: A statistical approach based on extreme value theory.” Water Resour. Res. 46 (11): W11504. https://doi.org/10.1029/2009WR008876.
Trenberth, K. E. 2011. “Changes in precipitation with climate change.” Clim. Res. 47 (1–2): 123–138. https://doi.org/10.3354/cr00953.
US Weather Bureau. 1960. Generalized estimates of probable maximum precipitation for the United States West of the 105th Meridian for areas to 400 square miles and durations to 24 hours. Washington, DC: US Dept.of Commerce.
US Weather Bureau. 1969. Interim report-probable maximum precipitation in California., 202. Washington, DC: US Dept. of Commerce.
Veneziano, D., A. Langousis, and C. Lepore. 2009. “New asymptotic and preasymptotic results on rainfall maxima from multifractal theory.” Water Resour. Res. 45 (11): W11421. https://doi.org/10.1029/2009WR008257.
Veneziano, D., and S. Yoon. 2013. “Rainfall extremes, excesses, and intensity-duration-frequency curves: A unified asymptotic framework and new nonasymptotic results based on multifractal measures.” Water Resour. Res. 49 (7): 4320–4334. https://doi.org/10.1002/wrcr.20352.
Viglione, A., A. Castellarin, M. Rogger, R. Merz, and G. Blöschl. 2012. “Extreme rainstorms: Comparing regional envelope curves to stochastically generated events.” Water Resour. Res. 48 (1): W01509. https://doi.org/10.1029/2011WR010515.
Villarini, G., F. Serinaldi, J. A. Smith, and W. F. Krajewski. 2009. “On the stationarity of annual flood peaks in the continental United States during the 20th century.” Water Resour. Res. 45 (8): W08417. https://doi.org/10.1029/2008WR007645.
Villarini, G., J. A. Smith, and G. A. Vecchi. 2013. “Changing frequency of heavy rainfall over the central United States.” J. Climate 26 (1): 351–357. https://doi.org/10.1175/JCLI-D-12-00043.1.
Vogel, R. M., N. C. Matalas, J. F. England, and A. Castellarin. 2007. “An assessment of exceedance probabilities of envelope curves.” Water Resour. Res. 43 (7): W07403. https://doi.org/10.1029/2006WR005586.
Vogel, R. M., C. Yaindl, and M. Walter. 2011. “Nonstationarity: Flood magnification and recurrence reduction factors in the United States.” J. Am. Water Resour. Assoc. 47 (3): 464–474. https://doi.org/10.1111/j.1752-1688.2011.00541.x.
von Mises, R. 1936. “La distribution de la plus grande de n valeurs.” Rev. Math. Union Interbalcanique 1 (1): 141–160.
Wangwongwiroj, N., and C. Khemngoen. 2019. “Probable maximum precipitation in tropical zone (Thailand) as estimated by generalized method and statistical method.” Int. J. Climatol. 39 (13): 4953–4966. https://doi.org/10.1002/joc.6119.
Water Resource Consultants. 2009. Probable maximum flood estimator for the Canadian prairies. Final Report for Agriculture and Agri-Food Canada Prairie Farm Rehabilitation Administration and Environment Branch, 17. Regina, SK, Canada: Water Resource Consultants.
Weaver, R. L. 1962. Meteorology of hydrologically critical storms in California., 207. Washington DC: US Dept. of Commerce.
Wilson, P. S., and R. Toumi. 2005. “A fundamental probability distribution for heavy rainfall.” Geophys. Res. Lett. 32 (14): L14812. https://doi.org/10.1029/2005GL022465.
WMO (World Meteorological Organization). 1973. Manual for estimation of probable maximum precipitation. 1st ed. Geneva: WMO.
WMO (World Meteorological Organization). 1986. Manual for estimation of probable maximum precipitation. 2nd ed. Geneva: WMO.
WMO (World Meteorological Organization). 2009. Manual on estimation of probable maximum precipitation (PMP). Geneva: WMO.
Yang, L., and J. Smith. 2018. “Sensitivity of extreme rainfall to atmospheric moisture content in the arid/semiarid southwestern United States: Implications for probable maximum precipitation estimates.” J. Geophys. Res. Atmos. 123 (3): 1638–1656. https://doi.org/10.1002/2017JD027850.
Yilmaz, A., M. Imteaz, and B. Perera. 2017. “Investigation of non-stationarity of extreme rainfalls and spatial variability of rainfall intensity–frequency–duration relationships: A case study of Victoria, Australia.” Int. J. Climatol. 37 (1): 430–442. https://doi.org/10.1002/joc.4716.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 12December 2020

History

Published online: Sep 25, 2020
Published in print: Dec 1, 2020
Discussion open until: Feb 25, 2021

Permissions

Request permissions for this article.

ASCE Technical Topics:

Authors

Affiliations

Jose D. Salas, Dist.M.ASCE [email protected]
Professor Emeritus, Dept. of Civil and Environmental Engineering, Colorado State Univ., Fort Collins, CO 80523 (corresponding author). Email: [email protected]
Michael L. Anderson, M.ASCE [email protected]
State Climatologist, California Dept. of Water Resources, 1416 9th St., Sacramento, CA 95814. Email: [email protected]
Simon M. Papalexiou [email protected]
Assistant Professor, Dept. of Civil, Geological and Environmental Engineering, Univ. of Saskatchewan, 101-121 Research Dr., Saskatoon, SK, Canada S7N 1K2; Assistant Professor, Global Institute for Water Security, 101-121 Research Dr., Saskatoon, SK, Canada S7N 3H5. Email: [email protected]
Felix Frances [email protected]
Professor of Hydrology, Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, 46022 Valencia, Spain. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share