Technical Papers
Jun 13, 2020

ANFIS Modeling with ICA, BBO, TLBO, and IWO Optimization Algorithms and Sensitivity Analysis for Predicting Daily Reference Evapotranspiration

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Hydrologic Engineering
Volume 25, Issue 8

Abstract

Evapotranspiration (ET) is an important factor in water resource management. This research investigated the performance of four optimization algorithms to hybridize adaptive network-based fuzzy inference systems (ANFIS) models as follow: ANFIS with imperialist competitive algorithm (ANFIS-ICA), ANFIS with biogeography-based optimization (ANFIS-BBO), ANFIS with teaching-learning–based optimization (ANFIS-TLBO), and ANFIS with invasive weed optimization algorithm (ANFIS-IWO). The hybridized algorithms were used to predict reference evapotranspiration (ETo) values in Kerman synoptic station. Six observed variables, including mean air temperature (Tmean), bright sunshine hours (SSH), solar radiation (Rs), mean speed of the wind at 2-m height (U2), pan evaporation (Epan), and three estimated variables, including extraterrestrial radiation (Ra), saturation vapor pressure (es), and actual vapor pressure (ea) were utilized to develop hybrid models. The results showed that the accuracy of hybrid models by using Tmean, U2, es, and ea was better than those using all required variables for developing the FAO-Penman-Monteith (FAO-PM) equation. Among the hybrid models, the ANFIS-ICA with respect to R=0.99, RMSE=0.5, and NSE=0.98 was considered the superior model. A sensitivity analysis has been done to assess the impact of inputs on the output of the superior model. Ea and Tmean had the highest and lowest effect on ETo prediction, respectively. Finally, ETo values were estimated by relatively new empirical equations and compared with FAO-PM equation. It was observed that the capability of hybrid models was more than the empirical equations in estimation of the ETo values.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code used during the study were provided by a third party. Direct requests for these materials may be made to the provider, as indicated in the Acknowledgements.

Acknowledgments

The authors would like to thank the Meteorological Organization of Kerman, Iran for providing meteorological data that is used in this study.

References

Abdel-Wahed, M. H., and R. L. Snyder. 2008. “Simple equation to estimate reference evapotranspiration from evaporation pans surrounded by fallow soil.” J. Irrig. Drain. Eng. 134 (4): 425–429. https://doi.org/10.1061/(ASCE)0733-9437(2008)134:4(425).
Abdullah, S. S., M. A. Malek, N. S. Abdullah, O. Kisi, and K. S. Yap. 2015. “Extreme learning machines: A new approach for prediction of reference evapotranspiration.” J. Hydrol. 527 (Aug): 184–195. https://doi.org/10.1016/j.jhydrol.2015.04.073.
Abdullah, S. S., M. A. Malek, A. Mustapha, and A. Aryanfar. 2014. “Hybrid of artificial neural network-genetic algorithm for prediction of reference evapotranspiration (ETo) in arid and semiarid regions.” J. Agric. Sci. 6 (3): 191. https://doi.org/10.5539/jas.v6n3p191.
Abdullahi, J., and G. Elkiran. 2017. “Prediction of the future impact of climate change on reference evapotranspiration in Cyprus using artificial neural network.” Procedia Comput. Sci. 120: 276–283. https://doi.org/10.1016/j.procs.2017.11.239.
Abdulshahed, A. M., A. P. Longstaff, and S. Fletcher. 2015. “The application of ANFIS prediction models for thermal error compensation on CNC machine tools.” Appl. Soft Comput. 27 (Feb): 158–168. https://doi.org/10.1016/j.asoc.2014.11.012.
Abu-Al-Nadi, D. I., O. M. Alsmadi, Z. S. Abo-Hammour, M. F. Hawa, and J. S. Rahhal. 2013. “Invasive weed optimization for model order reduction of linear MIMO systems.” Appl. Math. Modell. 37 (6): 4570–4577. https://doi.org/10.1016/j.apm.2012.09.006.
Adamala, S., N. S. Raghuwanshi, A. Mishra, and M. K. Tiwari. 2014. “Evapotranspiration modeling using second-order neural networks.” J. Hydrol. Eng. 19 (6): 1131–1140. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000887.
Adarsh, S., S. Sanah, K. K. Murshida, and P. Nooramol. 2017. “Scale dependent prediction of reference evapotranspiration based on multi-variate empirical mode decomposition.” Ain Shams Eng. J. 9 (4): 1839–1848. https://doi.org/10.1016/j.asej.2016.10.014.
Adeboye, O. B., J. A. Osunbitan, K. O. Adekalu, and D. A. Okunade. 2009. “Evaluation of FAO-56 Penman-Monteith and temperature based models in estimating reference evapotranspiration using complete and limited data, application to Nigeria.” Agric. Eng. Int.: CIGR J. 11.
Ahmadi-Nedushan, B. 2012. “Prediction of elastic modulus of normal and high strength concrete using ANFIS and optimal nonlinear regression models.” Constr. Build. Mater. 36 (Nov): 665–673. https://doi.org/10.1016/j.conbuildmat.2012.06.002.
Allen, R. G., L. S. Pereira, D. Raes, and M. J. F. Smith. 1998. Vol. 300 of Crop evapotranspiration—Guidelines for computing crop water requirements—FAO Irrigation and drainage paper 56, D05109. Rome: Food and Agriculture Organization of the United Nations.
Allen, R. G., and W. O. Pruitt. 1991. “FAO-24 reference evapotranspiration factors.” J. Irrig. Drain. Eng. 117 (5): 758–773. https://doi.org/10.1061/(ASCE)0733-9437(1991)117:5(758).
Amiri, M., J. Ghiasi-Freez, B. Golkar, and A. Hatampour. 2015. “Improving water saturation estimation in a tight shaly sandstone reservoir using artificial neural network optimized by imperialist competitive algorithm: A case study.” J. Pet. Sci. Eng. 127 (Mar): 347–358. https://doi.org/10.1016/j.petrol.2015.01.013.
ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management Committee, Irrigation and Drainage Division. 1993. “Criteria for evaluation of watershed models.” J. Irrig. Drain. Eng. 119 (3): 429–442. https://doi.org/10.1061/(ASCE)0733-9437(1993)119:3(429).
Ashofteh, P.-S., O. B. Haddad, H. Akbari-Alashti, and M. A. Mariño. 2015a. “Determination of irrigation allocation policy under climate change by genetic programming.” J. Irrig. Drain. Eng. 141 (4): 04014059. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000807.
Ashofteh, P.-S., O. B. Haddad, and M. A. Mariño. 2015b. “Risk analysis of water demand for agricultural crops under climate change.” J. Hydrol. Eng. 20 (4): 04014060. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001053.
Atashpaz-Gargari, E., and C. Lucas. 2007. “Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition.” In Proc., 2007 IEEE Congress on Evolutionary Computation, 4661–4667. New York: IEEE.
Bagheri, A., H. M. Peyhani, and M. Akbari. 2014. “Financial forecasting using ANFIS networks with quantum-behaved particle swarm optimization.” Expert Syst. Appl. 41 (14): 6235–6250. https://doi.org/10.1016/j.eswa.2014.04.003.
Baier, W., and G. W. Robertson. 1965. “Estimation of latent evaporation from simple weather observations.” Can. J. Plant. Sci. 45 (3): 276–284. https://doi.org/10.4141/cjps65-051.
Bakhtiari, B., N. Ghahreman, A. M. Liaghat, and G. Hoogenboom. 2010. “Evaluation of reference evapotranspiration models for a semiarid environment using lysimeter measurements.” J. Agric. Sci. Technol. 13 (2): 223–237.
Barak, S., and S. S. Sadegh. 2016. “Forecasting energy consumption using ensemble ARIMA–ANFIS hybrid algorithm.” Int. J. Electr. Power Energy Syst. 82 (Nov): 92–104. https://doi.org/10.1016/j.ijepes.2016.03.012.
Berti, A., G. Tardivo, A. Chiaudani, F. Rech, and M. Borin. 2014. “Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy.” Agric. Water Manage. 140 (Jul): 20–25. https://doi.org/10.1016/j.agwat.2014.03.015.
Bogawski, P., and E. Bednorz. 2014. “Comparison and validation of selected evapotranspiration models for conditions in Poland (Central Europe)” Water Resour. Manage. 28 (14): 5021–5038. https://doi.org/10.1007/s11269-014-0787-8.
Chen, W., M. Panahi, and H. R. Pourghasemi. 2017. “Performance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modeling.” Catena 157 (Oct): 310–324. https://doi.org/10.1016/j.catena.2017.05.034.
Chiew, F. H. S., N. N. Kamaladasa, H. M. Malano, and T. A. McMahon. 1995. “Penman-Monteith, FAO-24 reference crop evapotranspiration and class-A pan data in Australia.” Agric. Water Manage. 28 (1): 9–21. https://doi.org/10.1016/0378-3774(95)01172-F.
Conceição, M. A. F. 2002. “Reference evapotranspiration based on class A pan evaporation.” Sci. Agricola 59 (3): 417–420. https://doi.org/10.1590/S0103-90162002000300001.
Cuenca, R. H. 1989. Irrigation system design. An engineering approach. Englewood Cliffs, NJ: Prentice Hall.
Dai, J. F., J. Z. Chen, G. A. Lü, L. C. Brown, L. Gan, and Q. X. Xu. 2017. “Application of SWAT99. 2 to sensitivity analysis of water balance components in unique plots in a hilly region.” Water Sci. Eng. 10 (3): 209–216. https://doi.org/10.1016/j.wse.2017.09.002.
Djavareshkian, M. H., and A. Esmaeili. 2014. “Heuristic optimization of submerged hydrofoil using ANFIS–PSO.” Ocean Eng. 92 (Dec): 55–63. https://doi.org/10.1016/j.oceaneng.2014.09.033.
Doğan, E. 2009. “Reference evapotranspiration estimation using adaptive neuro-fuzzy inference systems.” Irrig. Drain. 58 (5): 617–628. https://doi.org/10.1002/ird.445.
Donatelli, M., G. Bellocchi, and L. Carlini. 2006. “Sharing knowledge via software components: Models on reference evapotranspiration.” Eur. J. Agron. 24 (2): 186–192. https://doi.org/10.1016/j.eja.2005.07.005.
Doorenbos, J., and W. O. Pruitt. 1977. Vol. 144 of Crop water requirements. FAO irrigation and drainage paper 24. Rome: Land and Water Development Division, Food and Agriculture Organization of the United Nations.
Droogers, P., and R. G. Allen. 2002. “Estimating reference evapotranspiration under inaccurate data conditions.” Irrig. Drain. Syst. 16 (1): 33–45. https://doi.org/10.1023/A:1015508322413.
Ghahreman, N., and M. Sameti. 2014. “Comparison of M5 model tree and artificial neural network for estimating potential evapotranspiration in semi-arid climates.” Desert 19 (1): 75–81. https://doi.org/10.22059/jdesert.2014.51056.
Ghare, A. D., P. D. Porey, and R. N. Ingle. 2006. “Discussion of ‘Simplified estimation of reference evapotranspiration from pan evaporation data in California’ by Richard L. Snyder, Morteza Orang, Scott Matyac, and Mark E. Grismer.” J. Irrig. Drain. Eng. 132 (5): 519–520. https://doi.org/10.1061/(ASCE)0733-9437(2006)132:5(519).
Ghorbani, M. A., R. C. Deo, Z. M. Yaseen, M. H. Kashani, and B. Mohammadi. 2018. “Pan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: Case study in North Iran.” Theor. Appl. Climatol. 133 (3–4): 1119–1131. https://doi.org/10.1007/s00704-017-2244-0.
Ghose, D. K., S. S. Panda, and P. C. Swain. 2013. “Prediction and optimization of runoff via ANFIS and GA.” Alexandria Eng. J. 52 (2): 209–220. https://doi.org/10.1016/j.aej.2013.01.001.
Gong, L., C. Y. Xu, D. Chen, S. Halldin, and Y. D. Chen. 2006. “Sensitivity of the Penman–Monteith reference evapotranspiration to key climatic variables in the Changjiang (Yangtze River) basin.” J. Hydrol. 329 (3–4): 620–629. https://doi.org/10.1016/j.jhydrol.2006.03.027.
Goyal, M. K., B. Bharti, J. Quilty, J. Adamowski, and A. Pandey. 2014. “Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS.” Expert Syst. Appl. 41 (11): 5267–5276. https://doi.org/10.1016/j.eswa.2014.02.047.
Grismer, M. E., M. Orang, R. Snyder, and R. Matyac. 2002. “Pan evaporation to reference evapotranspiration conversion methods.” J. Irrig. Drain. Eng. 128 (3): 180–184. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(180).
Guo, W., M. Chen, L. Wang, Y. Mao, and Q. Wu. 2017. “A survey of biogeography-based optimization.” Neural Comput. Appl. 28 (8): 1909–1926. https://doi.org/10.1007/s00521-016-2179-x.
Irmak, S., D. Z. Haman, and J. W. Jones. 2002. “Evaluation of class A pan coefficients for estimating reference evapotranspiration in humid location.” J. Irrig. Drain. Eng. 128 (3): 153–159. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:3(153).
Jang, J. S., and C. T. Sun. 1995. “Neuro-fuzzy modeling and control.” Proc. IEEE 83 (3): 378–406. https://doi.org/10.1109/5.364486.
Jiang, H. M., C. K. Kwong, W. H. Ip, and T. C. Wong. 2012. “Modeling customer satisfaction for new product development using a PSO-based ANFIS approach.” Appl. Soft Comput. 12 (2): 726–734. https://doi.org/10.1016/j.asoc.2011.10.020.
Jiang, H. M., C. K. Kwong, K. W. Siu, and Y. Liu. 2015. “Rough set and PSO-based ANFIS approaches to modeling customer satisfaction for affective product design.” Adv. Eng. Inf. 29 (3): 727–738. https://doi.org/10.1016/j.aei.2015.07.005.
Jovic, S., B. Nedeljkovic, Z. Golubovic, and N. Kostic. 2018. “Evolutionary algorithm for reference evapotranspiration analysis.” Comput. Electron. Agric. 150 (Jul): 1–4. https://doi.org/10.1016/j.compag.2018.04.003.
Karaboga, D., and E. Kaya. 2016. “An adaptive and hybrid artificial bee colony algorithm (aABC) for ANFIS training.” Appl. Soft Comput. 49 (Dec): 423–436. https://doi.org/10.1016/j.asoc.2016.07.039.
Keshtegar, B., O. Kisi, H. G. Arab, and M. Zounemat-Kermani. 2018. “Subset modeling basis ANFIS for prediction of the reference evapotranspiration.” Water Resour. Manage. 32 (3): 1101–1116. https://doi.org/10.1007/s11269-017-1857-5.
Khoshravesh, M., M. A. G. Sefidkouhi, and M. Valipour. 2017. “Estimation of reference evapotranspiration using multivariate fractional polynomial, Bayesian regression, and robust regression models in three arid environments.” Appl. Water Sci. 7 (4): 1911–1922. https://doi.org/10.1007/s13201-015-0368-x.
Kisi, O. 2007. “Evapotranspiration modelling from climatic data using a neural computing technique.” Hydrol. Processes: Int. J. 21 (14): 1925–1934. https://doi.org/10.1002/hyp.6403.
Kisi, O. 2015. “Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree.” J. Hydrol. 528 (Sep): 312–320. https://doi.org/10.1016/j.jhydrol.2015.06.052.
Kisi, O., and M. Zounemat-Kermani. 2014. “Comparison of two different adaptive neuro-fuzzy inference systems in modelling daily reference evapotranspiration.” Water Resour. Manage. 28 (9): 2655–2675. https://doi.org/10.1007/s11269-014-0632-0.
Kumar, M., N. S. Raghuwanshi, R. Singh, W. W. Wallender, and W. O. Pruitt. 2002. “Estimating evapotranspiration using artificial neural network.” J. Irrig. Drain. Eng. 128 (4): 224–233. https://doi.org/10.1061/(ASCE)0733-9437(2002)128:4(224).
Lenhart, T., K. Eckhardt, N. Fohrer, and H. G. Frede. 2002. “Comparison of two different approaches of sensitivity analysis.” Phys. Chem. Earth Parts A, B, C 27 (9–10): 645–654. https://doi.org/10.1016/S1474-7065(02)00049-9.
Li, L. L., Y. F. Yang, C. H. Wang, and K. P. Lin. 2018. “Biogeography-based optimization based on population competition strategy for solving the substation location problem.” Expert Syst. Appl. 97 (May): 290–302. https://doi.org/10.1016/j.eswa.2017.12.039.
Li, Y., R. Horton, T. Ren, and C. Chen. 2010. “Prediction of annual reference evapotranspiration using climatic data.” Agric. Water Manage. 97 (2): 300–308. https://doi.org/10.1016/j.agwat.2009.10.001.
Maier, H. R., and G. C. Dandy. 2000. “Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications.” Environ. Modell. Software 15 (1): 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9.
Medina, H., D. Tian, P. Srivastava, A. Pelosi, and G. B. Chirico. 2018. “Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions.” J. Hydrol. 562 (Jul): 502–517. https://doi.org/10.1016/j.jhydrol.2018.05.029.
Mehrabian, A. R., and C. Lucas. 2006. “A novel numerical optimization algorithm inspired from weed colonization.” Ecol. Inf. 1 (4): 355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003.
Misaghian, N., S. Shamshirband, D. Petković, M. Gocic, and K. Mohammadi. 2017. “Predicting the reference evapotranspiration based on tensor decomposition.” Theor. Appl. Climatol. 130 (3–4): 1099–1109. https://doi.org/10.1007/s00704-016-1943-2.
Mohammadi, M., B. Ghahraman, K. Davary, A. M. Liaghat, and M. Bannayan. 2012. “Pan coefficient (Kp) estimation under uncertainty on fetch.” Meteorol. Atmos. Phys. 117 (1–2): 73–83. https://doi.org/10.1007/s00703-012-0186-8.
Moosavi, S. H. S., and V. K. Bardsiri. 2017. “Satin bowerbird optimizer: A new optimization algorithm to optimize ANFIS for software development effort estimation.” Eng. Appl. Artif. Intell. 60 (Apr): 1–15. https://doi.org/10.1016/j.engappai.2017.01.006.
Moriasi, D. N., J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith. 2007. “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE 50 (3): 885–900. https://doi.org/10.13031/2013.23153.
Nazari-Shirkouhi, S., H. Eivazy, R. Ghodsi, K. Rezaie, and E. Atashpaz-Gargari. 2010. “Solving the integrated product mix-outsourcing problem using the imperialist competitive algorithm.” Expert Syst. Appl. 37 (12): 7615–7626. https://doi.org/10.1016/j.eswa.2010.04.081.
Noori, R., A. R. Karbassi, A. Moghaddamnia, D. Han, M. H. Zokaei-Ashtiani, A. Farokhnia, and M. G. Gousheh. 2011. “Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction.” J. Hydrol. 401 (3–4): 177–189. https://doi.org/10.1016/j.jhydrol.2011.02.021.
Orang, M. 1998. Potential accuracy of the popular non-linear regression equations for estimating pan coefficient values in the original and FAO-24 tables. Sacramento, CA: California Dept. of Water Resources.
Oudin, L., F. Hervieu, C. Michel, C. Perrin, V. Andréassian, F. Anctil, and C. Loumagne. 2005. “Which potential evapotranspiration input for a lumped rainfall–runoff model?: Part 2–Towards a simple and efficient potential evapotranspiration model for rainfall–runoff modeling.” J. Hydrol. 303 (1–4): 290–306. https://doi.org/10.1016/j.jhydrol.2004.08.026.
Ouyang, H. T. 2018. “Input optimization of ANFIS typhoon inundation forecast models using a multi-objective genetic algorithm.” J. Hydro-environ. Res. 19 (Mar): 16–27. https://doi.org/10.1016/j.jher.2018.01.002.
Ozkan, C., O. Kisi, and B. Akay. 2011. “Neural networks with artificial bee colony algorithm for modeling daily reference evapotranspiration.” Irrig. Sci. 29 (6): 431–441. https://doi.org/10.1007/s00271-010-0254-0.
Pandey, P. K., P. P. Dabral, and V. Pandey. 2016. “Evaluation of reference evapotranspiration methods for the northeastern region of India.” Int. Soil Water Conserv. Res. 4 (1): 52–63. https://doi.org/10.1016/j.iswcr.2016.02.003.
Pereira, A. R., N. A. V. Nova, A. S. Pereira, and V. Barbieri. 1995. “A model for the class A pan coefficient.” Agric. For. Meteorol. 76 (2): 75–82. https://doi.org/10.1016/0168-1923(94)02224-8.
Petković, D., M. Gocic, S. Shamshirband, S. N. Qasem, and S. Trajkovic. 2016. “Particle swarm optimization-based radial basis function network for estimation of reference evapotranspiration.” Theor. Appl. Climatol. 125 (3–4): 555–563. https://doi.org/10.1007/s00704-015-1522-y.
Pour-Ali Baba, A., J. Shiri, O. Kisi, A. F. Fard, S. Kim, and R. Amini. 2013. “Estimating daily reference evapotranspiration using available and estimated climatic data by adaptive neuro-fuzzy inference system (ANFIS) and artificial neural network (ANN).” Hydrol. Res. 44 (1): 131–146. https://doi.org/10.2166/nh.2012.074.
Quej, V. H., J. Almorox, J. A. Arnaldo, and R. Moratiel. 2019. “Evaluation of temperature-based methods for the estimation of reference evapotranspiration in the Yucatán peninsula, Mexico.” J. Hydrol. Eng. 24 (2): 05018029. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001747.
Quej, V. H., J. Almorox, J. A. Arnaldo, and L. Saito. 2017. “ANFIS, SVM and ANN soft-computing techniques to estimate daily global solar radiation in a warm sub-humid environment.” J. Atmos. Sol. Terr. Phys. 155 (Mar): 62–70. https://doi.org/10.1016/j.jastp.2017.02.002.
Rahimikhoob, A. 2016. “Comparison of M5 model tree and artificial neural network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images.” Water Resour. Manage. 30 (9): 3063–3075. https://doi.org/10.1007/s11269-016-1331-9.
Rahimikhoob, A., M. Asadi, and M. Mashal. 2013. “A comparison between conventional and M5 model tree methods for converting pan evaporation to reference evapotranspiration for semi-arid region.” Water Resour. Manage. 27 (14): 4815–4826. https://doi.org/10.1007/s11269-013-0440-y.
Rajasomashekar, S., and P. Aravindhababu. 2012. “Biogeography based optimization technique for best compromise solution of economic emission dispatch.” Swarm Evol. Comput. 7 (Dec): 47–57. https://doi.org/10.1016/j.swevo.2012.06.001.
Rao, R. V., and K. C. More. 2015. “Optimal design of the heat pipe using TLBO (teaching–learning-based optimization) algorithm.” Energy 80 (Feb): 535–544. https://doi.org/10.1016/j.energy.2014.12.008.
Rao, R. V., V. J. Savsani, and D. P. Vakharia. 2011. “Teaching–learning-based optimization: A novel method for constrained mechanical design optimization problems.” Comput.-Aided Des. 43 (3): 303–315. https://doi.org/10.1016/j.cad.2010.12.015.
Ravazzani, G., C. Corbari, S. Morella, P. Gianoli, and M. Mancini. 2012. “Modified Hargreaves-Samani equation for the assessment of reference evapotranspiration in Alpine river basins.” J. Irrig. Drain. Eng. 138 (7): 592–599. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000453.
Shahrokhnia, M. H., and A. R. Sepaskhah. 2012. “Evaluation of wheat and maize evapotranspiration determination by direct use of the Penman–Monteith equation in a semi-arid region.” Arch. Agron. Soil Sci. 58 (11): 1283–1302. https://doi.org/10.1080/03650340.2011.584216.
Simon, D. 2008. “Biogeography-based optimization.” IEEE Trans. Evol. Comput. 12 (6): 702–713. https://doi.org/10.1109/TEVC.2008.919004.
Snyder, R. L. 1992. “Equation for evaporation pan to evapotranspiration conversions.” J. Irrig. Drain. Eng. 118 (6): 977–980. https://doi.org/10.1061/(ASCE)0733-9437(1992)118:6(977).
Snyder, R. L., M. Orang, S. Matyac, and M. E. Grismer. 2005. “Simplified estimation of reference evapotranspiration from pan evaporation data in California.” J. Irrig. Drain. Eng. 131 (3): 249–253. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:3(249).
Soltani, M., T. B. Moghaddam, M. R. Karim, S. Shamshirband, and C. Sudheer. 2015. “RETRACTED: Stiffness performance of polyethylene terephthalate modified asphalt mixtures estimation using support vector machine-firefly algorithm.” Measurement 63 (Mar): 232–239. https://doi.org/10.1016/j.measurement.2014.11.022.
Subedi, A., J. L. Chávez, and A. A. Andales. 2013. “Preliminary performance evaluation of the Penman-Monteith evapotranspiration equation in southeastern Colorado.” In Vol. 970 of Proc., AGU Hydrology Days, 84–90. Fort Collins, CO: Colorado State Univ.
Sudheer, K. P., A. K. Gosain, and K. S. Ramasastri. 2003. “Estimating actual evapotranspiration from limited climatic data using neural computing technique.” J. Irrig. Drain. Eng. 129 (3): 214–218. https://doi.org/10.1061/(ASCE)0733-9437(2003)129:3(214).
Sumner, D. M., and J. M. Jacobs. 2005. “Utility of Penman–Monteith, Priestley–Taylor, reference evapotranspiration, and pan evaporation methods to estimate pasture evapotranspiration.” J. Hydrol. 308 (1–4): 81–104. https://doi.org/10.1016/j.jhydrol.2004.10.023.
Tao, H., L. Diop, A. Bodian, K. Djaman, P. M. Ndiaye, and Z. M. Yaseen. 2018. “Reference evapotranspiration prediction using hybridized fuzzy model with firefly algorithm: Regional case study in Burkina Faso.” Agric. Water Manage. 208 (Sep): 140–151. https://doi.org/10.1016/j.agwat.2018.06.018.
Thawkar, S., and R. Ingolikar. 2018. “Classification of masses in digital mammograms using Biogeography-based optimization technique.” J. King Saud Univ.-Comput. Inf. Sci. https://doi.org/10.1016/j.jksuci.2018.01.004.
Trajkovic, S. 2005. “Temperature-based approaches for estimating reference evapotranspiration.” J. Irrig. Drain. Eng. 131 (4): 316–323. https://doi.org/10.1061/(ASCE)0733-9437(2005)131:4(316).
Trajkovic, S., and S. Kolakovic. 2010. “Comparison of simplified pan-based equations for estimating reference evapotranspiration.” J. Irrig. Drain. Eng. 136 (2): 137–140. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000133.
Uyar, K., and E. Ülker. 2017. “B-spline curve fitting with invasive weed optimization.” Appl. Math. Modell. 52 (Dec): 320–340. https://doi.org/10.1016/j.apm.2017.07.047.
Valiantzas, J. D. 2013. “Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data.” J. Hydrol. 505 (Nov): 13–23. https://doi.org/10.1016/j.jhydrol.2013.09.005.
Valipour, M. 2015. “Temperature analysis of reference evapotranspiration models.” Meteorol. Appl. 22 (3): 385–394. https://doi.org/10.1002/met.1465.
Valipour, M. 2017. “Calibration of mass transfer-based models to predict reference crop evapotranspiration.” Appl. Water Sci. 7 (2): 625–635. https://doi.org/10.1007/s13201-015-0274-2.
Vu, S. H., H. Watanabe, and K. Takagi. 2005. “Application of FAO-56 for evaluating evapotranspiration in simulation of pollutant runoff from paddy rice field in Japan.” Agric. Water Manage. 76 (3): 195–210. https://doi.org/10.1016/j.agwat.2005.01.012.
Wei, L. Y. 2013. “A GA-weighted ANFIS model based on multiple stock market volatility causality for TAIEX forecasting.” Appl. Soft Comput. 13 (2): 911–920. https://doi.org/10.1016/j.asoc.2012.08.048.
Wei, L. Y. 2016. “A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting.” Appl. Soft Comput. 42 (May): 368–376. https://doi.org/10.1016/j.asoc.2016.01.027.
Wolpert, D. H., and W. G. Macready. 1997. “No free lunch theorems for optimization.” IEEE Trans. Evol. Comput. 1 (1): 67–82. https://doi.org/10.1109/4235.585893.
Wu, L., H. Zhou, X. Ma, J. Fan, and F. Zhang. 2019. “Daily reference evapotranspiration prediction based on hybridized extreme learning machine model with bio-inspired optimization algorithms: Application in contrasting climates of China.” J. Hydrol. 577 (Oct): 123960. https://doi.org/10.1016/j.jhydrol.2019.123960.
Yang, G. Q., Y. K. Liu, and K. Yang. 2015. “Multi-objective biogeography-based optimization for supply chain network design under uncertainty.” Comput. Ind. Eng. 85 (Jul): 145–156. https://doi.org/10.1016/j.cie.2015.03.008.
Yang, Y., Y. Chen, Y. Wang, C. Li, and L. Li. 2016. “Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting.” Appl. Soft Comput. 49 (Dec): 663–675. https://doi.org/10.1016/j.asoc.2016.07.053.
Yaseen, Z. M., I. Ebtehaj, H. Bonakdari, R. C. Deo, A. D. Mehr, W. H. M. W. Mohtar, L. Diop, A. El-Shafie, and V. P. Singh. 2017. “Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model.” J. Hydrol. 554 (Nov): 263–276. https://doi.org/10.1016/j.jhydrol.2017.09.007.
Yassin, M. A., A. A. Alazba, and M. A. Mattar. 2016. “Artificial neural networks versus gene expression programming for estimating reference evapotranspiration in arid climate.” Agric. Water Manage. 163 (Jan): 110–124. https://doi.org/10.1016/j.agwat.2015.09.009.
Zeinolabedini, M., and M. Najafzadeh. 2019. “Comparative study of different wavelet-based neural network models to predict sewage sludge quantity in wastewater treatment plant.” Environ. Monit. Assess. 191 (3): 163. https://doi.org/10.1007/s10661-019-7196-7.
Zheng, Z. X., and J. Q. Li. 2018. “Optimal chiller loading by improved invasive weed optimization algorithm for reducing energy consumption.” Energy Build. 161 (Feb): 80–88. https://doi.org/10.1016/j.enbuild.2017.12.020.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 8August 2020

History

Received: Jun 21, 2019
Accepted: Mar 11, 2020
Published online: Jun 13, 2020
Published in print: Aug 1, 2020
Discussion open until: Nov 13, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate M.Sc. Student, Dept. of Civil Engineering, Kerman Graduate Univ. of Advanced Technology, P.O. Box 76315-116, Kerman 7631818356, Iran (corresponding author). ORCID: https://orcid.org/0000-0002-1902-3099. Email: [email protected]
Sadegh Ghazanfari [email protected]
Assistant Professor, Dept. of Civil and Surveying Engineering, Kerman Graduate Univ. of Advanced Technology, P.O. Box 76315-116, Kerman 9177948974, Iran. Email: [email protected]
Maryam Salajegheh [email protected]
Ph.D. Candidate, Dept. of Water Engineering, Ferdowsi Univ. of Mashhad, P.O. Box 9177948974, Mashhad 9177948974, Iran. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share