Case Studies
May 5, 2020

Artificial Neural Networks–Based Model Parameter Transfer in Streamflow Simulation of Brazilian Atlantic Rainforest Watersheds

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 7

Abstract

This paper presents an assessment of the calibration and transfer of artificial neural networks (ANNs) to simulate streamflow at Brazilian Atlantic Rainforest basins. Primary data consisted of rainfall and a streamflow daily series (32 years in extent) of 12 subbasins of the Itapemirim River basin (IRB). First, data from three subbasins were used to adjust three ANNs to estimate daily specific streamflow from input parameters related to rainfall. After, the ANNs were applied to simulate the flows in all other IRB subbasins. The ANNs were able to reproduce the subbasin discharges for which they were adjusted. They also reached satisfactory performance when applied in most of the other subbasins. The obtained results demonstrate that the ANN technique is a viable alternative for simulating flows in regions lacking primary data for hydrological modeling. Besides, calibrating ANNs with subbasin data of an intermediate size or position tends to present a better overall performance than calibrating for the smaller (upstream) or the larger subbasins (downstream).

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES) (Finance Code 001) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico—Brasil (CNPq) (Finance Code 304916/2017-0).

References

Aichouri, I., A. Hani, N. Bougherira, L. Djabri, H. Chaffai, and S. Lallahem. 2015. “River flow model using artificial neural networks.” Energy Procedia 74 (Aug): 1007–1014. https://doi.org/10.1016/j.egypro.2015.07.832.
Alfieri, L., P. Burek, L. Feyen, and G. Forzieri. 2015. “Global warming increases the frequency of river floods in Europe.” Hydrol. Earth Syst. Sci. 19 (5): 2247–2260. https://doi.org/10.5194/hess-19-2247-2015.
Alvares, C. A., J. L. Stape, P. C. Sentelhas, J. L. Gonçalves, G. de Moraes, and G. Sparovek. 2013. “Köppen’s climate classification map for Brazil.” Meteorol. Z. 22 (6): 711–728. https://doi.org/10.1127/0941-2948/2013/0507.
Arnold, J. G. et al. 2012. “SWAT: Model use, calibration and validation.” Trans. ASABE. 55 (4): 1491–1508. https://doi.org/10.13031/2013.42256.
Bai, J., Z. Shen, and T. Yan. 2017. “A comparison of single- and multi-site calibration and validation: A case study of SWAT in the Miyun Reservoir watershed, China.” Front. Earth Sci. 11 (3): 592–600. https://doi.org/10.1007/s11707-017-0656-x.
Behzad, M., K. Asghari, M. Eazi, and M. Palhang. 2009. “Generalization performance of support vector machines and neural networks in runoff modeling.” Expert Syst. Appl. 36 (4): 7624–7629. https://doi.org/10.1016/j.eswa.2008.09.053.
Berghuijs, W. R., R. A. Woods, C. J. Hutton, and M. Sivapalan. 2016. “Dominant flood generating mechanisms across the United States.” Geophys. Res. Lett. 43 (9): 4382–4390. https://doi.org/10.1002/2016GL068070.
Besaw, L. E., D. M. Rizzo, P. R. Bierman, and W. R. Hackett. 2010. “Advances in ungauged streamflow prediction using artificial neural networks.” J. Hydrol. 386 (1–4): 27–37. https://doi.org/10.1016/j.jhydrol.2010.02.037.
Bitew, M. M., D. C. Goodrich, E. Demaria, P. Heilman, M. Nichols, L. Levick, C. L. Unkrich, and M. Kautz. 2019. “Multiparameter regression modeling for improving quality of measured rainfall and runoff data in densely instrumented watersheds.” J. Hydrol. Eng. 24 (10): 04019036. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001825.
Booker, D. J., and R. A. Woods. 2014. “Comparing and combining physically-based and empirically-based approaches for estimating the hydrology of ungauged catchments.” J. Hydrol. 508 (Jan): 227–239. https://doi.org/10.1016/j.jhydrol.2013.11.007.
Brighenti, T., N. B. Bonumá, and P. Chaffe. 2016. “Calibração hierárquica do modelo SWAT em uma bacia hidrográfica Catarinense.” [In Portuguese.] Revista Brasileira de Recursos Hídricos. 21 (1): 53–64. https://doi.org/10.21168/rbrh.v21n1.p53-64.
Chang, F.-J., P. Chen, Y. Lu, E. Huang, and K. Chang. 2014. “Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control.” J. Hydrol. 517 (Sep): 836–846. https://doi.org/10.1016/j.jhydrol.2014.06.013.
Chau, K. 2017. “Use of meta-heuristic techniques in rainfall-runoff modelling.” Water. 9 (3): 186. https://doi.org/10.3390/w9030186.
Danandeh Mehr, A., E. Kahya, A. Şahin, and M. J. Nazemosadat. 2015. “Successive-station monthly streamflow prediction using different artificial neural network algorithms.” Int. J. Environ. Sci. Technol. 12 (7): 2191–2200. https://doi.org/10.1007/s13762-014-0613-0.
Dariane, A. B., and S. Azimi. 2018. “Streamflow forecasting by combining neural networks and fuzzy models using advanced methods of input variable selection.” J. Hydroinf. 20 (2): 520–532. https://doi.org/10.2166/hydro.2017.076.
de Oliveira, V. A., C. R. de Mello, M. R. de Viola, and R. Srinivasan. 2017. “Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande river basin, Southeastern Brazil.” Int. J. Climatol. 37 (15): 5005–5023. https://doi.org/10.1002/joc.5138.
Devi, G. K., B. P. Ganasri, G. S. Dwarakish, G. K. Devia, B. P. Ganasri, and G. S. Dwarakish. 2015. “A review on hydrological models.” Aquat. Procedia 4 (1): 1001–1007. https://doi.org/10.1016/j.aqpro.2015.02.126.
de Vos, N. J., and T. H. M. Rientjes. 2005. “Constraints of artificial neural networks for rainfall-runoff modelling: Trade-offs in hydrological state representation and model evaluation.” Hydrol. Earth Syst. Sci. 9 (1/2): 111–126. https://doi.org/10.5194/hess-9-111-2005.
Eduardo, E. N., C. R. de Mello, M. R. Viola, P. R. Owens, and N. Curi. 2016. “Hydrological simulation as subside for management of surface water resources at the Mortes River basin.” Ciência e Agrotecnologia. 40 (4): 390–404. https://doi.org/10.1590/1413-70542016404009516.
Fukunaga, D. C., R. A. Cecílio, S. S. Zanetti, L. T. Oliveira, and M. A. C. Caiado. 2015. “Application of the SWAT hydrologic model to a tropical watershed at Brazil.” CATENA. 125 (Feb): 206–213. https://doi.org/10.1016/j.catena.2014.10.032.
Hagan, M. T., and M. B. Menhaj. 1994. “Training feedforward networks with the Marquardt algorithm.” IEEE Trans. Neural Networks. 5 (6): 989–993. https://doi.org/10.1109/72.329697.
Hasanpour Kashani, M., M. A. Ghorbani, Y. Dinpashoh, and S. Shahmorad. 2014. “Comparison of volterra model and artificial neural networks for rainfall–Runoff simulation.” Nat. Resour. Res. 23 (3): 341–354. https://doi.org/10.1007/s11053-014-9235-y.
Haykin, S. 1999. Neural networks: A comprehensive foundation. Delhi, India: Pearson Education.
Huo, Z., S. Feng, S. Kang, G. Huang, F. Wang, and P. Guo. 2012. “Integrated neural networks for monthly river flow estimation in arid inland basin of Northwest China.” J. Hydrol. 420–421 (Feb): 159–170. https://doi.org/10.1016/j.jhydrol.2011.11.054.
Instituto Brasileiro de Geografia e Estatística. 2012. Manual técnico da vegetação brasileira. [In Portuguese.] Rio de Janeiro, Brazil: Instituto Brasileiro de Geografia E Estatística.
Isik, S., L. Kalin, J. E. Schoonover, P. Srivastava, and B. Graeme Lockaby. 2013. “Modeling effects of changing land use/cover on daily streamflow: An artificial neural network and curve number based hybrid approach.” J. Hydrol. 485 (Apr): 103–112. https://doi.org/10.1016/j.jhydrol.2012.08.032.
Jain, A., and A. M. Kumar. 2007. “Hybrid neural network models for hydrologic time series forecasting.” Appl. Soft Comput. 7 (2): 585–592. https://doi.org/10.1016/j.asoc.2006.03.002.
Kagoda, P. A., J. Ndiritu, C. Ntuli, and B. Mwaka. 2010. “Application of radial basis function neural networks to short-term streamflow forecasting.” Phys. Chem. Earth Parts A/B/C. 35 (13–14): 571–581. https://doi.org/10.1016/j.pce.2010.07.021.
Kar, K. K., S.-K. Yang, and J.-H. Lee. 2015. “Assessing unit hydrograph parameters and peak runoff responses from storm rainfall events: A case study in Hancheon basin of Jeju Island.” J. Environ. Sci. Int. 24 (4): 437–447. https://doi.org/10.5322/JESI.2015.24.4.437.
Kişi, Ö. 2007. “Streamflow forecasting using different artificial neural network algorithms.” J. Hydrol. Eng. 12 (5): 532–539. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:5(532).
Lin, Y., H. Wen, and S. Liu. 2018. “Surface runoff response to climate change based on artificial neural network (ANN) models: A case study with Zagunao catchment in Upper Minjiang River, Southwest China.” J. Water Clim. Change. 9 (1): jwc2018130. https://doi.org/10.2166/wcc.2018.130.
Maier, H. R., et al. 2014. “Evolutionary algorithms and other metaheuristics in water resources: Current status, research challenges and future directions.” Environ. Modell. Software 62 (Dec): 271–299. https://doi.org/10.1016/j.envsoft.2014.09.013.
Maier, H. R., and G. C. Dandy. 2000. “Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications.” Environ. Modell. Software 15 (1): 101–124. https://doi.org/10.1016/S1364-8152(99)00007-9.
Mendes, H. A. 2016. Metodologia para calibração do modelo hidrológico DHSVM. [In Portuguese.] Jerônimo Monteiro, Brazil: Universidade Federal do Espírito Santo.
Molina-Navarro, E., H. E. Andersen, A. Nielsen, H. Thodsen, and D. Trolle. 2017. “The impact of the objective function in multi-site and multi-variable calibration of the SWAT model.” Environ. Modell. Software 93 (Jul): 255–267. https://doi.org/10.1016/j.envsoft.2017.03.018.
Moreira, M. C., T. E. C. de Oliveira, R. A. Cecílio, F. A. C. de Pinto, and F. F. Pruski. 2016. “Spatial interpolation of rainfall erosivity using artificial neural networks for southern Brazil conditions.” Revista Brasileira de Ciência do Solo. 40. https://doi.org/10.1590/18069657rbcs20150132.
Neto, J. D. O. M., A. A. Silva, C. R. Mello, and A. V. M. Júnior. 2014. “Simulação hidrológica escalar com o modelo SWAT.” Revista Brasileira de Recursos Hídricos. 19 (1): 177–188. https://doi.org/10.21168/rbrh.v19n1.p177-188.
Noori, N., and L. Kalin. 2016. “Coupling SWAT and ANN models for enhanced daily streamflow prediction.” J. Hydrol. 533 (Feb): 141–151. https://doi.org/10.1016/j.jhydrol.2015.11.050.
Nourani, V., Ö. Kisi, and M. Komasi. 2011. “Two hybrid artificial intelligence approaches for modeling rainfall–runoff process.” J. Hydrol. 402 (1–2): 41–59. https://doi.org/10.1016/j.jhydrol.2011.03.002.
Peixoto-Oliveira, J., M. A. Neves, S. S. Calegari, and F. Guadagnin. 2018. “Compartimentação morfoestrutural da Bacia Hidrográfica do Rio Itapemirim, sul do estado do Espírito Santo.” [In Portuguese.] Geologia USP. Série Científica. 18 (2): 57–70. https://doi.org/10.11606/issn.2316-9095.v18-134749.
Pereira, D. D. R., A. Q. D. Almeida, M. A. Martinez, and D. R. Q. Rosa. 2014. “Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast.” Revista Brasileira de Ciência do Solo. 38 (4): 1350–1358. https://doi.org/10.1590/S0100-06832014000400030.
Persson, M., B. Sivakumar, R. Berndtsson, O. H. Jacobsen, and P. Schjønning. 2002. “Predicting the dielectric constant–water content relationship using artificial neural networks.” Soil Sci. Soc. Am. J. 66 (5): 1424–1429. https://doi.org/10.2136/sssaj2002.1424.
Piniewski, M., and T. Okruszko. 2011. “Multi-site calibration and validation of the hydrological component of SWAT in a large lowland catchment.” In Modelling of hydrological processes in the Narew catchment, edited by D. Świątek and T. Okruszko, 15–41. Berlin: Springer.
Qi, C., and S. Grunwald. 2005. “GIS-based hydrologic modeling in the Sandusky watershed using SWAT.” Trans. ASAE 48 (1): 169–180. https://doi.org/10.13031/2013.17960.
Rauf, A., and A. Ghumman. 2018. “Impact assessment of rainfall-runoff simulations on the flow duration curve of the Upper Indus river—A comparison of data-driven and hydrologic models.” Water. 10 (7): 876. https://doi.org/10.3390/w10070876.
Ray, M. R., and A. K. Sarma. 2016. “Influence of time discretization and input parameter on the ANN based synthetic streamflow generation.” Water Resour. Manage. 30 (13): 4695–4711. https://doi.org/10.1007/s11269-016-1448-x.
Rezaeian-Zadeh, M., A. Stein, H. Tabari, H. Abghari, N. Jalalkamali, E. Z. Hosseinipour, and V. P. Singh. 2013a. “Assessment of a conceptual hydrological model and artificial neural networks for daily outflows forecasting.” Int. J. Environ. Sci. Technol. 10 (6): 1181–1192. https://doi.org/10.1007/s13762-013-0209-0.
Rezaeian-Zadeh, M., H. Tabari, and H. Abghari. 2013b. “Prediction of monthly discharge volume by different artificial neural network algorithms in semi-arid regions.” Arabian J. Geosci. 6 (7): 2529–2537. https://doi.org/10.1007/s12517-011-0517-y.
Shiau, J.-T., and H.-T. Hsu. 2016. “Suitability of ANN-based daily streamflow extension models: A case study of Gaoping river basin, Taiwan.” Water Resour. Manage. 30 (4): 1499–1513. https://doi.org/10.1007/s11269-016-1235-8.
Shrestha, M. K., F. Recknagel, J. Frizenschaf, and W. Meyer. 2016. “Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia.” Agric. Water Manage. 175 (Sep): 61–71. https://doi.org/10.1016/j.agwat.2016.02.009.
Trenberth, K. E., A. Dai, G. van der Schrier, P. D. Jones, J. Barichivich, K. R. Briffa, and J. Sheffield. 2014. “Global warming and changes in drought.” Nat. Clim. Change 4 (1): 17–22. https://doi.org/10.1038/nclimate2067.
Veintimilla-Reyes, J., F. Cisneros, and P. Vanegas. 2016. “Artificial neural networks applied to flow prediction: A use case for the Tomebamba River.” Procedia Eng. 162 (1): 153–161. https://doi.org/10.1016/j.proeng.2016.11.031.
Vertessy, R. A., T. J. Hatton, P. J. O’Shaughnessy, and M. D. A. Jayasuriya. 1993. “Predicting water yield from a mountain ash forest catchment using a terrain analysis based catchment model.” J. Hydrol. 150 (2–4): 665–700. https://doi.org/10.1016/0022-1694(93)90131-R.
Vilanova, R. S. 2017. Redes neurais artificiais aplicadas à simulação de vazão na bacia hidrográfica do rio Itapemirim–ES. [In Portuguese.] Jerônimo Monteiro, Brazil: Universidade Federal do Espírito Santo.
Vilanova, R. S., S. S. Zanetti, and R. A. Cecílio. 2019. “Assessing combinations of artificial neural networks input/output parameters to better simulate daily streamflow: Case of Brazilian Atlantic Rainforest watersheds.” Comput. Electron. Agric. 167 (Dec): 105080. https://doi.org/10.1016/j.compag.2019.105080.
Wang, S., Z. Zhang, G. Sun, P. Strauss, J. Guo, Y. Tang, and A. Yao. 2012. “Multi-site calibration, validation, and sensitivity analysis of the MIKE SHE model for a large watershed in Northern China.” Hydrol. Earth Syst. Sci. 16 (12): 4621–4632. https://doi.org/10.5194/hess-16-4621-2012.
Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier. 1994. “A distributed hydrology-vegetation model for complex terrain.” Water Resour. Res. 30 (6): 1665–1679. https://doi.org/10.1029/94WR00436.
Wu, L., M. Peng, S. Qiao, and X. Ma. 2018. “Effects of rainfall intensity and slope gradient on runoff and sediment yield characteristics of bare loess soil.” Environ. Sci. Pollut. Res. 25 (4): 3480–3487. https://doi.org/10.1007/s11356-017-0713-8.
Xavier, A. C., C. W. King, and B. R. Scanlon. 2016. “Daily gridded meteorological variables in Brazil (1980-2013).” Int. J. Climatol. 36 (6): 2644–2659. https://doi.org/10.1002/joc.4518.
Yan, Y., Q. Dai, Y. Yuan, X. Peng, L. Zhao, and J. Yang. 2018. “Effects of rainfall intensity on runoff and sediment yields on bare slopes in a karst area, SW China.” Geoderma 330 (Nov): 30–40. https://doi.org/10.1016/j.geoderma.2018.05.026.
Yaseen, Z. M., A. El-Shafie, O. Jaafar, H. A. Afan, and K. N. Sayl. 2015. “Artificial intelligence based models for stream-flow forecasting: 2000–2015.” J. Hydrol. 530 (Nov): 829–844. https://doi.org/10.1016/j.jhydrol.2015.10.038.
Yaseen, Z. M., S. O. Sulaiman, R. C. Deo, and K.-W. Chau. 2019. “An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction.” J. Hydrol. 569 (Feb): 387–408. https://doi.org/10.1016/j.jhydrol.2018.11.069.
Zanetti, S. S., E. F. Sousa, V. P. Oliveira, F. T. de Almeida, and S. Bernardo. 2007. “Estimating evapotranspiration using artificial neural network and minimum climatological data.” J. Irrig. Drain. Eng. 133 (2): 83–89. https://doi.org/10.1061/(ASCE)0733-9437(2007)133:2(83).
Zemzami, M., and L. Benaabidate. 2016. “Improvement of artificial neural networks to predict daily streamflow in a semi-arid area.” Hydrol. Sci. J. 61 (10): 1–12. https://doi.org/10.1080/02626667.2015.1055271.
Zumr, D., T. Dostál, and J. Devátý. 2015. “Identification of prevailing storm runoff generation mechanisms in an intensively cultivated catchment.” J. Hydrol. Hydromech. 63 (3): 246–254. https://doi.org/10.1515/johh-2015-0022.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 7July 2020

History

Received: May 8, 2019
Accepted: Feb 13, 2020
Published online: May 5, 2020
Published in print: Jul 1, 2020
Discussion open until: Oct 5, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Regiane Souza Vilanova [email protected]
Forestry Engineer, Programa de Pós-graduação em Ciências Florestais, Universidade Federal do Espírito Santo, Av. Gov. Lindemberg, 316, Jerônimo Monteiro, ES, CEP 295000-000, Brasil. Email: [email protected]
Sidney Sara Zanetti, D.Sc. [email protected]
Professor, Departamento de Ciências Florestais e da Madeira, Universidade Federal do Espírito Santo, Av. Gov. Lindemberg, 316, Jerônimo Monteiro, ES, CEP 295000-000, Brasil. Email: [email protected]
Professor, Departamento de Ciências Florestais e da Madeira, Universidade Federal do Espírito Santo, Av. Gov. Lindemberg, 316, Jerônimo Monteiro, ES, CEP 295000-000, Brasil (corresponding author). ORCID: https://orcid.org/0000-0003-2894-2481. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share