Case Studies
Feb 25, 2020

Climate Change Adaptation to Extreme Rainfall Events on a Local Scale in Namyangju, South Korea

Publication: Journal of Hydrologic Engineering
Volume 25, Issue 5

Abstract

Preparing for the impacts of climate change, especially extreme rainfall events, is not a “one size fits all” process. Exhaustive case studies must be reported to understand the impact of climate change in a local area. However, there have been some difficulties in presenting all procedures used to derive the impact of climate change. Therefore, the current study presents a local case study of how a local small basin is prepared to mitigate the effects of climate change on extreme rainfall events. From the case study, the full procedure to produce an intensity-duration-frequency (IDF) curve regarding a number of future global circulation model (GCM) daily precipitation scenarios is described in detail. The major portion of this work is focused on simply estimating extreme rainfall intensity with an IDF curve considering climate change scenarios from a GCM ensemble. From all available GCMs (19), the IDF ensemble is estimated with the following procedure: (1) daily GCM outputs obtained from the grid point that is closest to the target area were bias-corrected with gamma distribution after checking the suitability of the distribution model; (2) the bias-corrected daily precipitation data were downscaled; and (3) the IDF curves for the future scenarios were estimated and an ensemble was used to produce the final IDF curve. The result indicates that the IDF curve of future scenarios effectively inherits the behaviors of the original GCM daily precipitation outputs. The future IDF estimate will be employed to prepare for the effects of future climate change on extreme rainfall events on a local scale.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The authors acknowledge funding from the Korea Research Institute for Human Settlements (KRIHS). The first author also acknowledges that this work was partially supported by the National Research Foundation of Korea (NRF), and the Korean Ministry of Education, Science and Technology (MEST) (Grant No. 2018R1A2B6001799). The author Dr. Yoon acknowledges that this research was partially supported by the Seoul Institute of Technology. The authors appreciate the APEC Climate Center for providing the GCM data sets employed in the current study.

References

Ali Ghorbani, M., R. Kazempour, K.-W. Chau, S. Shamshirband, and P. Taherei Ghazvinei. 2018. “Forecasting pan evaporation with an integrated artificial neural network quantum-behaved particle swarm optimization model: A case study in Talesh, Northern Iran.” Eng. Appl. Comput. Fluid Mech. 12 (1): 724–737. https://doi.org/10.1080/19942060.2018.1517052.
APEC Climate Center. 2020. Climate information processing system. Busan, Korea: APEC Climate Center.
Bao, Q., P. Lin, T. Zhou, Y. Liu, Y. Yu, G. Wu, B. He, J. He, L. Li, and J. Li. 2013. “The flexible global ocean-atmosphere-land system model, spectral version 2: FGOALS-s2.” Adv. Atmos. Sci. 30 (3): 561–576. https://doi.org/10.1007/s00376-012-2113-9.
Butcher, J. B., and Zi, T. 2019. “Efficient method for updating IDF curves to future climate projections.” Preprint, submitted June 11, 2019. https://arxiv.org/ftp/arxiv/papers/1906/1906.04802.pdf.
Cannon, A. J., S. R. Sobie, and T. Q. Murdock. 2015. “Bias correction of GCM precipitation by quantile mapping: How well do methods preserve changes in quantiles and extremes?” J. Clim. 28 (17): 6938–6959. https://doi.org/10.1175/JCLI-D-14-00754.1.
Chau, K.-W. 2017. “Use of meta-heuristic techniques in rainfall-runoff modelling.” Water 9 (3): 186. https://doi.org/10.3390/w9030186.
Chylek, P., J. Li, M. Dubey, M. Wang, and G. Lesins. 2011. “Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2.” Atmos. Chem. Phys. Discuss. 11 (8): 22893–22907. https://doi.org/10.5194/acpd-11-22893-2011.
Collins, W., N. Bellouin, M. Doutriaux-Boucher, N. Gedney, T. Hinton, C. Jones, S. Liddicoat, G. Martin, F. O’Connor, and J. Rae. 2008. Evaluation of the HadGEM2 model. Exeter, UK: Met Office.
Doney, S. C., I. Lima, R. A. Feely, D. M. Glover, K. Lindsay, N. Mahowald, J. K. Moore, and R. Wanninkhof. 2009. “Mechanisms governing interannual variability in upper-ocean inorganic carbon system and air–sea CO2 fluxes: Physical climate and atmospheric dust.” Deep Sea Res. Part II 56 (8): 640–655. https://doi.org/10.1016/j.dsr2.2008.12.006.
Dufresne, J.-L., et al. 2013. “Climate change projections using the IPSL-CM5 earth system model: From CMIP3 to CMIP5.” Clim. Dyn. 40 (9): 2123–2165. https://doi.org/10.1007/s00382-012-1636-1.
Dunne, J. P., J. G. John, A. J. Adcroft, S. M. Griffies, R. W. Hallberg, E. Shevliakova, R. J. Stouffer, W. Cooke, K. A. Dunne, and M. J. Harrison. 2012. “GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics.” J. Clim. 25 (19): 6646–6665. https://doi.org/10.1175/JCLI-D-11-00560.1.
Eagleson, P. S. 1978. “Climate, soil, and vegetation: 1. Introduction to water balance dynamics.” Water Resour. Res. 14 (5): 705–712. https://doi.org/10.1029/WR014i005p00705.
Gent, P. R., G. Danabasoglu, L. J. Donner, M. M. Holland, E. C. Hunke, S. R. Jayne, D. M. Lawrence, R. B. Neale, P. J. Rasch, and M. Vertenstein. 2011. “The community climate system model version 4.” J. Clim. 24 (19): 4973–4991. https://doi.org/10.1175/2011JCLI4083.1.
Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen. 2012. “Technical note: Downscaling RCM precipitation to the station scale using statistical transformations—A comparison of methods.” Hydrol. Earth Syst. Sci. 16 (9): 3383–3390. https://doi.org/10.5194/hess-16-3383-2012.
Gutjahr, O., and G. Heinemann. 2013. “Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM.” Theor. Appl. Climatol. 114 (3–4): 511–529. https://doi.org/10.1007/s00704-013-0834-z.
He, J., C. Valeo, and F.-C. Bouchart. 2006. “Enhancing urban infrastructure investment planning practices for a changing climate.” Water Sci. Technol. 53 (10): 13–20. https://doi.org/10.2166/wst.2006.292.
Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek. 2013. “A trend-preserving bias correction—The ISI-MIP approach.” Earth Syst. Dynam. 4 (2): 219–236. https://doi.org/10.5194/esd-4-219-2013.
Hosseinzadehtalaei, P., H. Tabari, and P. Willems. 2018. “Precipitation intensity–duration–frequency curves for central Belgium with an ensemble of EURO-CORDEX simulations, and associated uncertainties.” Atmos. Res. 200 (Feb): 1–12. https://doi.org/10.1016/j.atmosres.2017.09.015.
Hwang, S.-H., D.-H. Ham, and D.-R. Lee. 2012. “Improvement and supplement of probability rainfall in South Korea.” In Proc., Korea Water Resources Association 2012 Conf. Seoul, Korea: Korea Water Resources Association.
Im, J., D. Lee, M. Park, J. Park, and S. Park. 2017. “Analysis of the change in design flood due to climate variation.” J. Korean Soc. Hazard Mitigation 17 (6): 81–85. https://doi.org/10.9798/KOSHAM.2017.17.6.81.
IPCC (Intergovernmental Panel on Climate Change). 2001. Climate change 2001: The scientific basis. Cambridge, UK: Cambridge University Press.
Jones, C., J. Hughes, N. Bellouin, S. Hardiman, G. Jones, J. Knight, S. Liddicoat, F. O’Connor, R. J. Andres, and C. Bell. 2011. “The HadGEM2-ES implementation of CMIP5 centennial simulations.” Geosci. Model Dev. 4 (3): 543–570. https://doi.org/10.5194/gmd-4-543-2011.
Jungclaus, J., N. Keenlyside, M. Botzet, H. Haak, J.-J. Luo, M. Latif, J. Marotzke, U. Mikolajewicz, and E. Roeckner. 2006. “Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM.” J. Clim. 19 (16): 3952–3972. https://doi.org/10.1175/JCLI3827.1.
Kharin, V. V., and F. W. Zwiers. 2000. “Changes in the extremes in an ensemble of transient climate simulations with a coupled atmosphere-ocean GCM.” J. Clim. 13 (21): 3760–3788. https://doi.org/10.1175/1520-0442(2000)013%3C3760:CITEIA%3E2.0.CO;2.
Kim, M. K., S. Kim, J. Kim, J. Heo, J. S. Park, W. T. Kwon, and M. S. Suh. 2016. “Statistical downscaling for daily precipitation in Korea using combined PRISM, RCM, and quantile mapping: Part 1, methodology and evaluation in historical simulation.” Asia-Pac. J. Atmos. Sci. 52 (2): 79–89. https://doi.org/10.1007/s13143-016-0010-3.
Krajewski, W. F., V. Lakshmi, K. P. Georgakakos, and S. C. Jain. 1991. “A Monte Carlo study of rainfall sampling effect on a distributed catchment model.” Water Resour. Res. 27 (1): 119–128. https://doi.org/10.1029/90WR01977.
Lee, O., Y. Park, E. S. Kim, and S. Kim. 2016. “Projection of Korean probable maximum precipitation under future climate change scenarios.” Adv. Meteorol. 2016: 16. https://doi.org/10.1155/2016/3818236.
Lee, T., and C. Jeong. 2014a. “Frequency analysis of nonidentically distributed hydrometeorological extremes associated with large-scale climate variability applied to South Korea.” J. Appl. Meteorol. Climatol. 53 (5): 1193–1212. https://doi.org/10.1175/JAMC-D-13-0200.1.
Lee, T., and C. Jeong. 2014b. “Nonparametric statistical temporal downscaling of daily precipitation to hourly precipitation and implications for climate change scenarios.” J. Hydrol. 510 (Mar): 182–196. https://doi.org/10.1016/j.jhydrol.2013.12.027.
Lee, T., T. B. M. J. Ouarda, and C. Jeong. 2012. “Nonparametric multivariate weather generator and an extreme value theory for bandwidth selection.” J. Hydrol. 452–453 (Jul): 161–171. https://doi.org/10.1016/j.jhydrol.2012.05.047.
Lee, T., and T. Park. 2017. “Nonparametric temporal downscaling with event-based population generating algorithm for RCM daily precipitation to hourly: Model development and performance evaluation.” J. Hydrol. 547 (Apr): 498–516. https://doi.org/10.1016/j.jhydrol.2017.01.049.
Lee, T., J. D. Salas, and J. Prairie. 2010. “An enhanced nonparametric streamflow disaggregation model with genetic algorithm.” Water Resour. Res. 46 (8): W08545. https://doi.org/10.1029/2009WR007761.
Lee, T. S. 2008. “Stochastic simulation of hydrologic data based on nonparametric approaches.” Ph.D. dissertation, Dept. of Civil and Environmental Engineering, Colorado State Univ.
Lee, T. S., J. D. Salas, J. Keedy, D. Frevert, and T. Fulp. 2007. “Stochastic modeling and simulation of the Colorado river flows.” In Proc., 2007 World Environmental and Water Resources Congress: Restoring Our Natural Habitat. Reston, VA: ASCE.
Li, R. C., W. Zhou, J. C. Chan, and P. Huang. 2012. “Asymmetric modulation of western North Pacific cyclogenesis by the Madden-Julian oscillation under ENSO conditions.” J. Clim. 25 (15): 5374–5385. https://doi.org/10.1175/JCLI-D-11-00337.1.
Maidment, D. 1993. Handbook of hydrology. New York: McGraw-Hill.
Manzini, E., C. Cagnazzo, P. G. Fogli, A. Bellucci, and W. A. Müller. 2012. “Stratosphere-troposphere coupling at inter-decadal time scales: Implications for the North Atlantic Ocean.” Geophys. Res. Lett. 39 (5): L05801. https://doi.org/10.1029/2011GL050771.
Maraun, D. 2013. “Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue.” J. Clim. 26 (6): 2137–2143. https://doi.org/10.1175/JCLI-D-12-00821.1.
Moazenzadeh, R., B. Mohammadi, S. Shamshirband, and K.-W. Chau. 2018. “Coupling a firefly algorithm with support vector regression to predict evaporation in northern Iran.” Eng. Appl. Comput. Fluid Mech. 12 (1): 584–597. https://doi.org/10.1080/19942060.2018.1482476.
Mullan, B., D. Wratt, S. Dean, M. Hollis, S. Allan, T. Williams, and G. Kenny. 2008. Climate change effects and impacts assessment: A guidance manual for local government in New Zealand. Wellington: Ministry for the Environment.
NIMS (National Institute of Meteorological Sciences). 2020. CORDEX-East Asia. Seogwipo, South Korea: NIMS.
Ouarda, T. B. M. J., and S. El-Adlouni. 2011. “Bayesian nonstationary frequency analysis of hydrological variables.” J. Am. Water Resour. Assoc. 47 (3): 496–505. https://doi.org/10.1111/j.1752-1688.2011.00544.x.
Panofsky, H. A., and G. W. Brier. 1968. Some applications of statistics to meteorology. University Park, PA: Earth and Mineral Sciences Continuing Education, College of Earth and Mineral Sciences.
Park, D., N. Nikhil, and S. Lee. 2013. “Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event.” Nat. Hazards Earth Syst. Sci. 13 (11): 2833–2849. https://doi.org/10.5194/nhess-13-2833-2013.
Pierce, D. W., T. P. Barnett, B. D. Santer, and P. J. Gleckler. 2009. “Selecting global climate models for regional climate change studies.” Proc. Natl. Acad. Sci. USA 106 (21): 8441–8446. https://doi.org/10.1073/pnas.0900094106.
Rahmani, M. A., and M. Zarghami. 2013. “A new approach to combine climate change projections by ordered weighting averaging operator; applications to Northwestern Provinces of Iran.” Global Planet. Change 102 (Mar): 41–50. https://doi.org/10.1016/j.gloplacha.2013.01.007.
Salas, J. D., and J. Obeysekera. 2014. “Revisiting the concepts of return period and risk for nonstationary hydrologic extreme events.” J. Hydrol. Eng. 19 (3): 554–568. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000820.
Scoccimarro, E., S. Gualdi, A. Bellucci, A. Sanna, P. Giuseppe Fogli, E. Manzini, M. Vichi, P. Oddo, and A. Navarra. 2011. “Effects of tropical cyclones on ocean heat transport in a high-resolution coupled general circulation model.” J. Clim. 24 (16): 4368–4384. https://doi.org/10.1175/2011JCLI4104.1.
Sharma, D., A. D. Gupta, and M. Babel. 2007. “Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand.” Hydrol. Earth Syst. Sci. Discuss. 11 (4): 1373–1390. https://doi.org/10.5194/hess-11-1373-2007.
Shin, J.-Y., J.-H. Heo, C. Jeong, and T. Lee. 2014. “Meta-heuristic maximum likelihood parameter estimation of the mixture normal distribution for hydro-meteorological variables.” Stochastic Environ. Res. Risk Assess. 28 (2): 347–358. https://doi.org/10.1007/s00477-013-0753-7.
Shin, J.-Y., T. Lee, and T. B. M. J. Ouarda. 2015. “Heterogeneous mixture distributions for modeling multisource extreme rainfalls.” J. Hydrometeorol. 16 (6): 2639–2657. https://doi.org/10.1175/JHM-D-14-0130.1.
Shin, J.-Y., T. Lee, T. Park, and S. Kim. 2018. “Bias correction of RCM outputs using mixture distributions under multiple extreme weather influences.” Theor. Appl. Climatol. 137 (1–2): 201–216. https://doi.org/10.1007/s00704-018-2585-3.
Son, C., T. Lee, and H. H. Kwon. 2017. “Integrating nonstationary behaviors of typhoon and non-typhoon extreme rainfall events in East Asia.” Sci. Rep. 7 (1): 1–9. https://doi.org/10.1038/s41598-017-04629-1.
Son, C.-Y., J.-S. Kim, Y.-I. Moon, and J.-H. Lee. 2014. “Characteristics of tropical cyclone-induced precipitation over the Korean River basins according to three evolution patterns of the Central-Pacific El Nino.” Stochastic Environ. Res. Risk Assess. 28 (5): 1147–1156. https://doi.org/10.1007/s00477-013-0804-0.
Strupczewski, W., V. Singh, and H. Mitosek. 2001. “Non-stationary approach to at-site flood frequency modelling. III. Flood analysis of Polish rivers.” J. Hydrol. 248 (1): 152–167. https://doi.org/10.1016/S0022-1694(01)00399-7.
Sung, J. H., H. I. Eum, J. Park, and J. Cho. 2018. “Assessment of climate change impacts on extreme precipitation events: Applications of CMIP5 climate projections statistically downscaled over South Korea.” Adv. Meteorol. 2018: 1–12. https://doi.org/10.1155/2018/4720523.
Taormina, R., K.-W. Chau, and B. Sivakumar. 2015. “Neural network river forecasting through baseflow separation and binary-coded swarm optimization.” J. Hydrol. 529 (Oct): 1788–1797. https://doi.org/10.1016/j.jhydrol.2015.08.008.
Themessl, M. J., A. Gobiet, and A. Leuprecht. 2011. “Empirical-statistical downscaling and error correction of daily precipitation from regional climate models.” Int. J. Climatol. 31 (10): 1530–1544. https://doi.org/10.1002/joc.2168.
Tjiputra, J., C. Roelandt, M. Bentsen, D. Lawrence, T. Lorentzen, J. Schwinger, Ø. Seland, and C. Heinze. 2013. “Evaluation of the carbon cycle components in the Norwegian Earth System Model (NorESM).” Geosci. Model Dev. 6 (2): 301–325. https://doi.org/10.5194/gmd-6-301-2013.
Voldoire, A., E. Sanchez-Gomez, D. S. y Mélia, B. Decharme, C. Cassou, S. Sénési, S. Valcke, I. Beau, A. Alias, and M. Chevallier. 2013. “The CNRM-CM5.1 global climate model: Description and basic evaluation.” Clim. Dyn. 40 (9–10): 2091–2121. https://doi.org/10.1007/s00382-011-1259-y.
Volodin, E., N. Dianskii, and A. Gusev. 2010. “Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations.” Izv. Atmos. Oceanic Phys. 46 (4): 414–431. https://doi.org/10.1134/S000143381004002X.
Watanabe, M., T. Suzuki, R. O’ishi, Y. Komuro, S. Watanabe, S. Emori, T. Takemura, M. Chikira, T. Ogura, and M. Sekiguchi. 2010. “Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity.” J. Clim. 23 (23): 6312–6335. https://doi.org/10.1175/2010JCLI3679.1.
Watanabe, S., T. Hajima, K. Sudo, T. Nagashima, T. Takemura, H. Okajima, T. Nozawa, H. Kawase, M. Abe, and T. Yokohata. 2011. “MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments.” Geosci. Model Dev. 4 (4): 845–872. https://doi.org/10.5194/gmd-4-845-2011.
Wu, C., and K. Chau. 2011. “Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis.” J. Hydrol. 399 (3–4): 394–409. https://doi.org/10.1016/j.jhydrol.2011.01.017.
Wu, T., R. Yu, F. Zhang, Z. Wang, M. Dong, L. Wang, X. Jin, D. Chen, and L. Li. 2010. “The Beijing Climate Center atmospheric general circulation model: Description and its performance for the present-day climate.” Clim. Dyn. 34 (1): 123–147. https://doi.org/10.1007/s00382-008-0487-2.
Yaseen, Z. M., S. O. Sulaiman, R. C. Deo, and K.-W. Chau. 2019. “An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction.” J. Hydrol. 569 (Feb): 387–408. https://doi.org/10.1016/j.jhydrol.2018.11.069.
Yoon, S., C. Jeong, and T. Lee. 2013. “Application of harmony search to design storm estimation from probability distribution models.” J. Appl. Math. 2013: 1–11. https://doi.org/10.1155/2013/932943.
Yukimoto, S., Y. Adachi, M. Hosaka, T. Sakami, H. Yoshimura, M. Hirabara, T. Y. Tanaka, E. Shindo, H. Tsujino, and M. Deushi. 2012. “A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance.” J. Meteorolog. Soc. Jpn. Ser. II 90: 23–64. https://doi.org/10.2151/jmsj.2012-A02.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 25Issue 5May 2020

History

Received: Feb 13, 2019
Accepted: Nov 8, 2019
Published online: Feb 25, 2020
Published in print: May 1, 2020
Discussion open until: Jul 25, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Associate Professor, Dept. of Civil Engineering, Engineering Research Institute, Gyeongsang National Univ., 501 Jinju-daero, Jinju, Gyeongnam 660701, South Korea (corresponding author). ORCID: https://orcid.org/0000-0001-5110-5388. Email: [email protected]
Chanyoung Son
Senior Researcher, Hangang River Regional Head Office, K-water, 11 Gyoyookwon-ro, Gwacheon-si, Gyeonggi-do 13841, South Korea.
Mieun Kim
Senior Researcher, Water Resources Management Center, K-water, 200 Sintanjin-ro, Daedeok-gu, Deajeon 34350, South Korea.
Sangeun Lee
Senior Researcher, Water Resources Research Center, Korea Research Institute for Human Settlements, 5 Gukchaegyeonguwon-ro, Sejong-si 30149, South Korea.
Sunkwon Yoon
Research Fellow, Dept. of Safety and Disaster Prevention Research, Seoul Institute of Technology, Maebongsan-ro, Mapo-gu, Seoul 03909, South Korea.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share