Case Studies
Aug 28, 2019

Meteorological Characterization of Large Daily Flows in a High-Relief Ungauged Basin Using Principal Component Analysis

Publication: Journal of Hydrologic Engineering
Volume 24, Issue 11

Abstract

Decision making and hydrologic design for coping with floods are complex tasks in poorly gauged high-relief basins. The response of such basins is driven by precipitation and temperature, which controls the freezing level elevation and size of the runoff-contributing area. Moreover, early warning of floods based solely on real-time in situ monitoring is impractical. This study presents a meteorological characterization of daily flows based on off-site daily precipitation and temperature data in a high-relief catchment in central Chile. The results show that the variables that best explain daily discharges are the cumulative precipitation over the previous 3 days measured at a high elevation and the minimum temperature on the day of the maximum discharge measured at a lower elevation in the valley. These variables were used to build three multivariate regression models, based on principal component analysis, which are able to predict the occurrence of daily flows, particularly for low exceedance probabilities. Although developed for a particular catchment, and despite the specific meteorological threshold magnitudes identified for the catchment, the analysis is easily extendable to other similar high-relief locations.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

The authors are thankful for funding from the Comisión Nacional de Investigación Científica y Tecnológica/Fondo de Financiamiento de Centros de Investigación en Áreas Prioritarias (CONICYT/FONDAP) (Grant Nos. 15110017 and 15110020), Centro Universidad Católica (UC) Interdisciplinario de Cambio Global, and Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT) (Grant No. 1161439). Meteorological data were provided by the Dirección de Aguas and the Dirección Meteorológica de Chile.

References

Aleotti, P. 2004. “A warning system for rainfall-induced shallow failures.” Eng. Geol. 73 (3–4): 247–265. https://doi.org/10.1016/j.enggeo.2004.01.007.
Amadio, P., M. Mancini, G. Menduni, D. Rabuffetti, and G. Ravazzani. 2003. “A real-time flood forecasting system based on rainfall thresholds working on the Arno Watershed: Definition and reliability analysis.” In Proc., 5th EGS Plinius Conf. Munich, Germany: European Geophysical Society.
Bennett, N. D., B. F. Croke, G. Guariso, J. H. Guillaume, S. H. Hamilton, A. J. Jakeman, S. Marsili-Libelli, L. T. Newham, J. P. Norton, and C. Perrin. 2013. “Characterising performance of environmental models.” Environ. Modell. Software 40 (Feb): 1–20. https://doi.org/10.1016/j.envsoft.2012.09.011.
Borga, M., E. Anagnostou, G. Blöschl, and J.-D. Creutin. 2010. “Flash floods: Observations and analysis of hydro-meteorological controls.” J. Hydrol. 394 (1–2): 1–3. https://doi.org/10.1016/j.jhydrol.2010.07.048.
Carpenter, T., J. Sperfslage, K. Georgakakos, T. Sweeney, and D. Fread. 1999. “National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems.” J. Hydrol. 224 (1): 21–44. https://doi.org/10.1016/S0022-1694(99)00115-8.
Carrasco, J. F., G. Casassa, and J. Quintana. 2005. “Changes of the 0°C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century.” Hydrol. Sci. J. 50 (6): 933–948. https://doi.org/10.1623/hysj.2005.50.6.933.
Castro, L. M., J. Gironás, and B. Fernández. 2014. “Spatial estimation of daily precipitation in regions with complex relief and scarce data using terrain orientation.” J. Hydrol. 517 (Sep): 481–492. https://doi.org/10.1016/j.jhydrol.2014.05.064.
Chow, V. T., D. R. Maidment, and L. W. Mays. 1988. Applied hydrology. New York: McGraw-Hill.
Cortés, G., X. Vargas, and J. McPhee. 2011. “Climatic sensitivity of streamflow timing in the extratropical western Andes Cordillera.” J. Hydrol. 405 (1–2): 93–109. https://doi.org/10.1016/j.jhydrol.2011.05.013.
Demargue, J., P. Javelle, D. Prgande, C. DeSaint Aubin, and B. Janet. 2016. “Flash flood warnings for ungauged basins based on high-resolution precipitation forecasts.” In Proc., EGU General Assembly Conf. Abstracts. Munich, Germany: European Geophysical Society.
Falvey, M., and R. Garreaud. 2007. “Wintertime precipitation episodes in central Chile: Associated meteorological conditions and orographic influences.” J. Hydrometeorol. 8 (2): 171–193. https://doi.org/10.1175/JHM562.1.
Garreaud, R. 2009. “The Andes climate and weather.” Adv. Geosci. 22: 3–11. https://doi.org/10.5194/adgeo-22-3-2009.
Garreaud, R. 2013. “Warm winter storms in Central Chile.” J. Hydrometeorol. 14 (5): 1515–1534. https://doi.org/10.1175/JHM-D-12-0135.1.
Garreaud, R., and J. Rutllant. 2006. “Factores meteorológicos de la contaminación atmosférica en Santiago.” In Contaminación atmosférica urbana: Episodios críticos de contaminación ambiental en la ciudad de Santiago, 36–53. Santiago, Chile: Editorial Universitaria.
Geladi, P., and B. R. Kowalski. 1986. “Partial least-squares regression: A tutorial.” Anal. Chim. Acta 185: 1–17. https://doi.org/10.1016/0003-2670(86)80028-9.
Green, P. J., and B. W. Silverman. 1993. Nonparametric regression and generalized linear models: A roughness penalty approach. Boca Raton, FL: CRC Press.
Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman. 2010. “Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements.” Geophys. Res. Lett. 37 (20): L20401. https://doi.org/10.1029/2010GL044696.
Hapuarachchi, H., Q. Wang, and T. Pagano. 2011. “A review of advances in flash flood forecasting.” Hydrol. Processes 25 (18): 2771–2784. https://doi.org/10.1002/hyp.8040.
Houghton, J. C. 1978. “Birth of a parent: The Wakeby distribution for modeling flood flows.” Water Resour. Res. 14 (6): 1105–1109. https://doi.org/10.1029/WR014i006p01105.
Jeffers, J. 1967. “Two case studies in the application of principal component analysis.” J. R. Stat. Soc. Series C (Appl. Stat.) 16 (3): 225–236.
Jolliffe, I. 2002. Principal component analysis. New York: Wiley.
Kendall, M. 1975. Multivariate analysis. London: Charles Griffin.
Kohavi, R. 1995. “A study of cross-validation and bootstrap for accuracy estimation and model selection.” In Proc., Int. Joint Conf. on Artificial Intelligence (IJCAI), 1137–1145. San Francisco, CA: Morgan Kaufmann Publishers Inc.
Kowalski, B., R. Gerlach, and H. Wold. 1982. “Chemical systems under indirect observation.” In Systems under indirect observation, 191–209. Amsterdam, Netherlands: North-Holland.
Ma, J., D. Zeng, H. Zhao, and C. Liu. 2013. “Cross-correlation measure for mining spatio-temporal patterns.” J. Database Manage. 24 (2): 13–34. https://doi.org/10.4018/jdm.2013040102.
Marchi, L., M. Borga, E. Preciso, and E. Gaume. 2010. “Characterisation of selected extreme flash floods in Europe and implications for flood risk management.” J. Hydrol. 394 (1–2): 118–133. https://doi.org/10.1016/j.jhydrol.2010.07.017.
Martina, M., E. Todini, and A. Libralon. 2006. “A Bayesian decision approach to rainfall thresholds based flood warning.” Hydrol. Earth Syst. Sci. 10 (3): 413–426. https://doi.org/10.5194/hess-10-413-2006.
Martina, M., E. Todini, and A. Libralon. 2009. “Rainfall thresholds for flood warning systems: A Bayesian decision approach.” In Hydrological modelling and the water cycle, 203–227. New York: Springer.
Montesarchio, V., F. Lombardo, and F. Napolitano. 2009. “Rainfall thresholds and flood warning: An operative case study.” Nat. Hazards Earth Syst. Sci. 9 (1): 135–144. https://doi.org/10.5194/nhess-9-135-2009.
Neiman, P. J., F. M. Ralph, G. A. Wick, Y.-H. Kuo, T.-K. Wee, Z. Ma, G. H. Taylor, and M. D. Dettinger. 2008. “Diagnosis of an intense atmospheric river impacting the Pacific Northwest: Storm summary and offshore vertical structure observed with COSMIC satellite retrievals.” Mon. Weather Rev. 136 (11): 4398–4420. https://doi.org/10.1175/2008MWR2550.1.
Neiman, P. J., L. J. Schick, F. M. Ralph, M. Hughes, and G. A. Wick. 2011. “Flooding in Western Washington: The connection to atmospheric rivers.” J. Hydrometeorol. 12 (6): 1337–1358. https://doi.org/10.1175/2011JHM1358.1.
Norbiato, D., M. Borga, S. Degli Esposti, E. Gaume, and S. Anquetin. 2008. “Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins.” J. Hydrol. 362 (3): 274–290. https://doi.org/10.1016/j.jhydrol.2008.08.023.
ONEMI (Oficina Nacional de Emergencia Ministerio del Interior). 1995. Aluvión de La Florida ocurrido el 3 de mayo de 1993. Santiago: Departamento de Protección Civil, ONEMI.
Peel, M. C., B. L. Finlayson, and T. A. McMahon. 2007. “Updated world map of the Köppen-Geiger climate classification.” Hydrol. Earth Syst. Sci. Discuss. 4 (2): 439–473. https://doi.org/10.5194/hessd-4-439-2007.
Segoni, S., G. Rossi, A. Rosi, and F. Catani. 2014. “Landslides triggered by rainfall: A semi-automated procedure to define consistent intensity-duration thresholds.” Comput. Geosci. 63 (Feb): 123–131. https://doi.org/10.1016/j.cageo.2013.10.009.
Sepúlveda, S. A., and C. Padilla. 2008. “Rain-induced debris and mudflow triggering factors assessment in the Santiago cordilleran foothills, Central Chile.” Nat. Hazard. 47 (2): 201–215. https://doi.org/10.1007/s11069-007-9210-6.
Sepúlveda, S. A., S. Rebolledo, and G. Vargas. 2006. “Recent catastrophic debris flows in Chile: Geological hazard, climatic relationships and human response.” Quat. Int. 158 (1): 83–95. https://doi.org/10.1016/j.quaint.2006.05.031.
Simonoff, J. S. 2012. Smoothing methods in statistics. New York: Springer Science & Business Media.
Stocker, T. 2014. Climate change 2013: The physical science basis: Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
Turkington, T., J. Ettema, C. Van Westen, and K. Breinl. 2014. “Empirical atmospheric thresholds for debris flows and flash floods in the southern French Alps.” Nat. Hazards Earth Syst. Sci. 14 (6): 1517–1530. https://doi.org/10.5194/nhess-14-1517-2014.
Viale, M., and R. Garreaud. 2015. “Orographic effects of the subtropical and extratropical Andes on upwind precipitating clouds.” J. Geophys. Res.: Atmos. 120 (10): 4962–4974. https://doi.org/10.1002/2014JD023014.
Vicuña, S., J. Gironás, F. J. Meza, M. L. Cruzat, M. Jelinek, E. Bustos, D. Poblete, and N. Bambach. 2013. “Exploring possible connections between hydrological extreme events and climate change in central south Chile.” Hydrol. Sci. J. 58 (8): 1598–1619. https://doi.org/10.1080/02626667.2013.840380.
Von Storch, H., and F. W. Zwiers. 2001. Statistical analysis in climate research. Cambridge, UK: Cambridge University Press.
Wijngaard, J., A. Klein Tank, and G. Können. 2003. “Homogeneity of 20th century European daily temperature and precipitation series.” Int. J. Climatol. 23 (6): 679–692. https://doi.org/10.1002/joc.906.
Wilks, D. S. 2011. Statistical methods in the atmospheric sciences. Oxford, UK: Academic Press.
Wu, S.-J., C.-T. Hsu, H.-C. Lien, and C.-H. Chang. 2015. “Modeling the effect of uncertainties in rainfall characteristics on flash flood warning based on rainfall thresholds.” Nat. Hazard. 75 (2): 1677–1711. https://doi.org/10.1007/s11069-014-1390-2.
Zegpi, M., and B. Fernandez. 2010. “Hydrological model for urban catchments—Analytical development using copulas and numerical solution.” Hydrol. Sci. J. 55 (7): 1123–1136. https://doi.org/10.1080/02626667.2010.512466.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 24Issue 11November 2019

History

Received: Aug 25, 2018
Accepted: Jun 19, 2019
Published online: Aug 28, 2019
Published in print: Nov 1, 2019
Discussion open until: Jan 28, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Lina Castro, Ph.D. [email protected]
Assistant Professor, Departamento de Obras Civiles, Universidad Técnica Federico Santa María, Ave. España 1680, Valparaíso 2390123, Chile (corresponding author). Email: [email protected]
Jorge Gironás, Ph.D., A.M.ASCE [email protected]
Associate Professor, Departamento de Ingeniería Hidráulica y Ambiental and Centro Interdisciplinario de Cambio Global, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 7820436, Chile; Researcher, Centro de Desarrollo Urbano Sustentable and Centro Nacional de Investigación para la Gestión Integrada de Desastres Naturales, Ave. Vicuña Mackenna 4860, Santiago 7820436, Chile. Email: [email protected]
Cristian Escauriaza, Ph.D. [email protected]
Associate Professor, Departamento de Ingeniería Hidráulica y Ambiental, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 7820436, Chile; Researcher, Centro Nacional de Investigación para la Gestión Integrada de Desastres Naturales, Ave. Vicuña Mackenna 4860, Santiago 7820436, Chile. Email: [email protected]
Pilar Barría, Ph.D. [email protected]
Assistant Professor, Departamento de Gestión Forestal y Medio Ambiente, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Ave. Santa Rosa 11315, Santiago 8820808, Chile. Email: [email protected]
Christian Oberli, Ph.D. [email protected]
Associate Professor, Departamento de Ingeniería Eléctrica, Pontificia Universidad Católica de Chile, Ave. Vicuña Mackenna 4860, Santiago 7820436, Chile; Researcher, Centro Nacional de Investigación para la Gestión Integrada de Desastres Naturales, Ave. Vicuña Mackenna 4860, Santiago 7820436, Chile. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share