Abstract

This is the first study to assess the possible changes in floods in the Bangladesh part of the densely populated Ganges–Brahmaputra–Meghna (GBM) delta at 1.5°C, 2°C, and 4°C global warming levels. This study was undertaken with the aim of joining the efforts of the global scientific community to assist in the preparation of the upcoming Special Report on 1.5 Degrees by the Intergovernmental Panel on Climate Change. The future changes in the possibilities of peak synchronization of nearby large rivers were assessed for the first time. Peak synchronization is critical for flood assessment in low-lying delta regions like Bangladesh. Results indicate that the flood peaks of the GBM rivers are more likely to synchronize in the future. Results also indicate that the flood magnitudes may become more severe in the future. At global warming levels of 1.5°C, 2°C, and 4°C, flood flows with a 100-year return period are projected to increase by about 27%, 29%, and 54% for the Ganges; 8%, 24%, and 63% for the Brahmaputra; and 15%, 38%, and 81% for the Meghna, respectively, compared with a baseline of 1986–2005.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme FP7/2007–2013 under Grant No. 603864 (HELIX: High-End cLimate Impacts and eXtremes; http://www.helixclimate.eu).

References

Abbaspour, K. C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist, and R. Srinivasan. 2007. “Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT.” J. Hydrol. (Amsterdam, Neth.) 333 (2–4): 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014.
Alam, S., M. M. Ali, and Z. I. Islam. 2016. “Future streamflow of Brahmaputra River basin under synthetic climate change scenarios.” J. Hydrol. Eng. 21 (11): 05016027. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001435.
Alexander, M. 2010. “Extratropical air-sea interaction, sea surface temperature variability, and the Pacific Decadal Oscillation.” In Climate dynamics: Why does climate vary? 123–148. Washington, DC: American Geophysical Union.
Alfieri, L., B. Bisselink, F. Dottori, G. Naumann, A. Roo, P. Salamon, K. Wyser, and L. Feyen. 2017. “Global projections of river flood risk in a warmer world.” Earth’s Future 5 (2): 171–182. https://doi.org/10.1002/2016EF000485.
Arino, O., P. Bicheron, F. Achard, J. Latham, R. Witt, and J. Weber. 2008. “GlobCover the most detailed portrait of Earth.” ESA Bull. 136 (Nov): 25–31.
Arnell, N., and S. Gosling. 2014. “The impacts of climate change on river flood risk at the global scale.” Clim. Change 134 (3): 387–401. https://doi.org/10.1007/s10584-014-1084-5.
Arnold, J. G., R. Srinivasan, R. S. Muttiah, and J. R. Williams. 1998. “Large area hydrologic modeling and assessment. Part I: Model development.” J. Am. Water Resour. Assoc. 34 (1): 73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
Betts, R. A., et al. 2018. “Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model.” Philos. Trans. R. Soc., A 376 (2119): 20160452. https://doi.org/10.1098/rsta.2016.0452.
Brodeau, L., and T. Koenigk. 2016. “Extinction of the northern oceanic deep convection in an ensemble of climate model simulations of the 20th and 21st centuries.” Clim. Dyn. 46 (9–10): 2863–2882. https://doi.org/10.1007/s00382-015-2736-5.
Brown, S., and R. J. Nicholls. 2015. “Subsidence and human influences in mega deltas: The case of the Ganges-Brahmaputra-Meghna.” Sci. Total Environ. 527–528: 362–374. https://doi.org/10.1016/j.scitotenv.2015.04.124.
Caesar, J., T. Janes, A. Lindsay, and B. Bhaskaran. 2015. “Temperature and precipitation projections over Bangladesh and the upstream Ganges, Brahmaputra and Meghna systems.” Environ. Sci.: Processes Impacts 17 (6): 1047–1056. https://doi.org/10.1039/C4EM00650J.
Caian, M., T. Koenigk, R. Döscher, and A. Devasthale. 2018. “An interannual link between Arctic sea-ice cover and the North Atlantic Oscillation.” Clim. Dyn. 50 (1–2): 423–441. https://doi.org/10.1007/s00382-017-3618-9.
Clement, A., P. DiNezio, and C. Deser. 2011. “Rethinking the ocean’s role in the Southern Oscillation.” J. Clim. 24 (15): 4056–4072. https://doi.org/10.1175/2011JCLI3973.1.
Cloke, H. L., and F. Pappenberger. 2009. “Ensemble flood forecasting: A review.” J. Hydrol. (Amsterdam, Neth.) 375 (3–4): 613–626. https://doi.org/10.1016/j.jhydrol.2009.06.005.
Delworth, T., S. Manabe, and R. J. Stouffer. 1993. “Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model.” J. Clim. 6 (11): 1993–2011. https://doi.org/10.1175/1520-0442(1993)006%3C1993:IVOTTC%3E2.0.CO;2.
Deser, C., M. A. Alexander, and M. S. Timlin. 2003. “Understanding the persistence of sea surface temperature anomalies in midlatitudes.” J. Clim. 16 (1): 57–72. https://doi.org/10.1175/1520-0442(2003)016%3C0057:UTPOSS%3E2.0.CO;2.
Deser, C., A. Phillips, V. Bourdette, and H. Teng. 2012. “Uncertainty in climate change projections: The role of internal variability.” Clim. Dyn. 38 (3–4): 527–546. https://doi.org/10.1007/s00382-010-0977-x.
Devkota, L. P., and D. R. Gyawali. 2015. “Impacts of climate change on hydrological regime and water resources management of the Koshi River Basin, Nepal.” J. Hydrol.: Reg. Stud. 4 (B): 502–515. https://doi.org/10.1016/j.ejrh.2015.06.023.
Dommenget, D., and M. Latif. 2008. “Generation of hyper climate modes.” Geophys. Res. Lett. 35 (2): L02706. https://doi.org/10.1029/2007GL031087.
Dosio, A., L. Mentaschi, E. M. Fischer, and K. Wyser. 2018. “Extreme heat waves under 1.5°C and 2°C global warming.” Environ. Res. Lett. 13 (5): 054006. https://doi.org/10.1088/1748-9326/aab827.
Eisner, S., et al. 2016. “An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins.” Clim. Change 141 (3): 401–417. https://doi.org/10.1007/s10584-016-1844-5.
Fahad, M. G. R., A. K. M. S. Islam, R. Nazari, M. H. Alfi, G. M. T. Islam, and S. K. Bala. 2018. “Regional changes of precipitation and temperature over Bangladesh using bias-corrected multi-model ensemble projections considering high-emission pathways.” Int. J. Climatol. 38 (4): 1634–1648. https://doi.org/10.1002/joc.5284.
FAO (Food and Agricultural Organization). 1974. FAO-UNESCO soil map of the world, 1:5 000 000. Paris: UNESCO.
Feldstein, S. B. 2000. “The timescale, power spectra, and climate noise properties of teleconnection patterns.” J. Clim. 13 (24): 4430–4440. https://doi.org/10.1175/1520-0442(2000)013%3C4430:TTPSAC%3E2.0.CO;2.
Gain, A. K., W. W. Immerzeel, F. C. S. Weiland, and M. F. P. Bierkens. 2011. “Impact of climate change on the stream flow of the lower Brahmaputra: Trends in high and low flows based on discharge-weighted ensemble modelling.” Hydrol. Earth Syst. Sci. 15 (5): 1537–1545. https://doi.org/10.5194/hess-15-1537-2011.
Hattermann, F. F., et al. 2017. “Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins.” Clim. Change 141 (3): 561–576. https://doi.org/10.1007/s10584-016-1829-4.
Hazeleger, W., et al. 2011. “EC-Earth V2.2: Description and validation of a new seamless earth system prediction model.” Clim. Dyn. 39 (11): 2611–2629. https://doi.org/10.1007/s00382-011-1228-5.
Hempel, S., K. Frieler, L. Warszawski, J. Schewe, and F. Piontek. 2013. “A trend-preserving bias correction—The ISI-MIP approach.” Earth Syst. Dyn. 4 (2): 219–236. https://doi.org/10.5194/esd-4-219-2013.
Hewitt, H. T., D. Copsey, I. D. Culverwell, C. M. Harris, R. S. R. Hill, A. B. Keen, A. J. McLaren, and E. C. Hunke. 2011. “Design and implementation of the infrastructure of HadGEM3: The next generation Met Office climate modelling system.” Geosci. Model Dev. 4 (2): 223–253. https://doi.org/10.5194/gmd-4-223-2011.
Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae. 2013. “Global flood risk under climate change.” Nat. Clim. Change 3 (9): 816–821. https://doi.org/10.1038/nclimate1911.
Hochrainer-Stigler, S., J. Mochizuki, and G. Pflus. 2016. “Impacts of global and climate change uncertainties for disaster risk projections: A case study on rainfall-induced flood risk in Bangladesh.” J. Extreme Events 3 (1): 1650004. https://doi.org/10.1142/S2345737616500044.
Hopson, T. M., and P. J. Webster. 2010. “A 1–10-day ensemble forecasting scheme for the major river basins of Bangladesh: Forecasting severe floods of 2003–07.” J. Hydrometeorol. 11 (3): 618–641. https://doi.org/10.1175/2009JHM1006.1.
Ikeuchi, H., Y. Hirabayashi, D. Yamazaki, M. Kiguchi, S. Koirala, T. Nagano, A. Kotera, and S. Kanae. 2015. “Modeling complex flow dynamics of fluvial floods exacerbated by sea level rise in the Ganges-Brahmaputra-Meghna delta.” Environ. Res. Lett. 10 (12): 124011. https://doi.org/10.1088/1748-9326/10/12/124011.
Immerzeel, W. W. 2008. “Historical trends and future predictions of climate variability in the Brahmaputra basin.” Int. J. Climatol. 28 (2): 243–254. https://doi.org/10.1002/joc.1528.
Islam, A. S., A. Haque, and S. K. Bala. 2010. “Hydrologic characteristics of floods in Ganges–Brahmaputra–Meghna (GBM) delta.” Nat. Hazard. 54 (3): 797–811. https://doi.org/10.1007/s11069-010-9504-y.
Ji, Z., S. Kang, D. Zhang, C. Zhu, J. Wu, and Y. Xu. 2011. “Simulation of the anthropogenic aerosols over South Asia and their effects on Indian summer monsoon.” Clim. Dyn. 36 (9–10): 1633–1647. https://doi.org/10.1007/s00382-010-0982-0.
Jones, P. D., M. New, D. E. Parker, S. Martin, and I. G. Rigor. 1999. “Surface air temperature and its changes over the past 150 years.” Rev. Geophys. 37 (2): 173–199. https://doi.org/10.1029/1999RG900002.
Kamal, R., M. A. Matin, and S. Nasreen. 2013. “Response of river flow regime to various climate change scenarios in Ganges-Brahmaputra-Meghna basin.” J. Water Resour. Ocean Sci. 2 (2): 15–24. https://doi.org/10.11648/j.wros.20130202.12.
Kay, S., J. Caesar, J. Wolf, L. Bricheno, R. J. Nicholls, A. K. M. S. Islam, A. Haque, A. Pardaens, and J. A. Lowe. 2015. “Modelling the increased frequency of extreme sea levels in the Ganges-Brahmaputra-Meghna delta due to sea level rise and other effects of climate change.” Environ. Sci. Processes Impacts 17 (7): 1311–1322. https://doi.org/10.1039/C4EM00683F.
Khandu, E. Forootan, M. Schumacher, J. L. Awange, and H. M. Schmied. 2016. “Exploring the influence of precipitation extremes and human water use on total water storage (TWS) changes in the Ganges-Brahmaputra-Meghna river basin.” Water Resour. Res. 52 (3): 2240–2258. https://doi.org/10.1002/2015WR018113.
Koenigk, T., and L. Brodeau. 2017. “Arctic climate and its interaction with lower latitudes under different levels of anthropogenic warming in a global coupled climate model.” Clim. Dyn. 49 (1–2): 471–492. https://doi.org/10.1007/s00382-016-3354-6.
Koutroulis, A. G., L. V. Papadimitriou, M. G. Grillakis, I. K. Tsanis, K. Wyser, and R. A. Betts. 2018. “Freshwater vulnerability under high end climate change. A pan-European assessment.” Sci. Total Environ. 613–614: 271–286. https://doi.org/10.1016/j.scitotenv.2017.09.074.
Krien, Y., et al. 2017. “Towards improved storm surge models in the northern Bay of Bengal.” Cont. Shelf Res. 135: 58–73. https://doi.org/10.1016/j.csr.2017.01.014.
Lehner, B., K. Verdin, and A. Jarvis. 2008. “New global hydrography derived from spaceborne elevation data.” EOS Trans. Am. Geophys. Union 89 (10): 93–94. https://doi.org/10.1029/2008EO100001.
Loo, Y. Y., L. Billa, and A. Singh. 2015. “Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia.” Geosci. Front. 6 (6): 817–823. https://doi.org/10.1016/j.gsf.2014.02.009.
MacLachlan, C., et al. 2015. “Global seasonal forecast system version 5 (GloSea5): A high-resolution seasonal forecast system.” Q. J. R. Meteorol. Soc. 141 (689): 1072–1084. https://doi.org/10.1002/qj.2396.
Maraun, D., et al. 2017. “Towards process-informed bias correction of climate change simulations.” Nat. Clim. Change 7 (11): 664–773. https://doi.org/10.1038/nclimate3418.
Masood, M., P. J.-F. Yeh, N. Hanasaki, and K. Takeuchi. 2015. “Model study of the impacts of future climate change on the hydrology of Ganges–Brahmaputra–Meghna basin.” Hydrol. Earth Syst. Sci. 19 (2): 747–770. https://doi.org/10.5194/hess-19-747-2015.
Mirza, M. M. Q. 2002. “Global warming and changes in the probability in the occurrence of floods in Bangladesh and implications.” Global Environ. Change 12 (2): 127–138. https://doi.org/10.1016/S0959-3780(02)00002-X.
Mirza, M. M. Q. 2010. “Climate change, flooding in South Asia and implications.” Reg. Environ. Change 11 (1): 95–107. https://doi.org/10.1007/s10113-010-0184-7.
Mirza, M. M. Q., R. A. Warrick, and N. J. Ericksen. 2003. “The implications of climate change on floods of the Ganges, Brahmaputra and Meghna rivers in Bangladesh.” Clim. Change 57 (3): 287–318. https://doi.org/10.1023/A:1022825915791.
Mishra, V., and R. Lilhare. 2016. “Hydrologic sensitivity of Indian sub-continental river basins to climate change.” Global Planet. Change 139: 78–96. https://doi.org/10.1016/j.gloplacha.2016.01.003.
Mohammed, K., A. K. M. S. Islam, G. M. T. Islam, L. Alfieri, S. K. Bala, and M. J. U. Khan. 2017. “Impact of high-end climate change on floods and low flows of the Brahmaputra River.” J. Hydrol. Eng. 22 (10): 04017041. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001567.
Musau, J., J. Sang, J. Gathenya, and E. Luedeling. 2015. “Hydrological responses to climate change in Mt. Elgon watersheds.” J. Hydrol.: Reg. Stud. 3: 233–246. https://doi.org/10.1016/j.ejrh.2014.12.001.
Naumann, G., L. Alfieri, K. Wyser, L. Mentaschi, R. A. Betts, H. Carrao, J. Spinoni, J. Vogt, L. Feyen. 2018. “Global changes in drought conditions under different levels of warming.” Geophy. Res. Lett. 45 (7): 3285–3296. https://doi.org/10.1002/2017GL076521.
Nepal, S., and A. B. Shrestha. 2015. “Impact of climate change on the hydrological regime of the Indus, Ganges and Brahmaputra river basins: A review of the literature.” Int. J. Water Resour. Dev. 31 (2): 201–218. https://doi.org/10.1080/07900627.2015.1030494.
Pagano, T. C., et al. 2014. “Challenges of operational river forecasting.” J. Hydrometeorol. 15 (4): 1692–1707. https://doi.org/10.1175/JHM-D-13-0188.1.
Pappenberger, F., et al. 2015. “How do I know if my forecasts are better? Using benchmarks in hydrological ensemble prediction.” J. Hydrol. 522: 697–713. https://doi.org/10.1016/j.jhydrol.2015.01.024.
Rahman, M. M., D. S. Arya, N. K. Goel, and A. P. Dhamy. 2010. “Design flow and stage computations in the Teesta River, Bangladesh, using frequency analysis and MIKE 11 modeling.” J. Hydrol. Eng. 16 (2): 176–186. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000299.
Rahman, M. R. 2013. “Impact of riverbank erosion hazard in the Jamuna floodplain areas in Bangladesh.” J. Sci. Found. 8 (1–2): 55–65. https://doi.org/10.3329/jsf.v8i1-2.14627.
Saha, A., S. Ghosh, A. S. Sahana, and E. P. Rao. 2014. “Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon.” Geophys. Res. Lett. 41 (20): 7323–7330. https://doi.org/10.1002/2014GL061573.
Schaake, J. C., T. M. Hamill, R. Buizza, and M. Clark. 2007. “HEPEX: The hydrological ensemble prediction experiment.” Bull. Am. Meteorol. Soc. 88 (10): 1541–1548. https://doi.org/10.1175/BAMS-88-10-1541.
Shahid, S. 2010. “Trends in extreme rainfall events of Bangladesh.” Theor. Appl. Climatol. 104 (3–4): 489–499. https://doi.org/10.1007/s00704-010-0363-y.
Sheffield, J., G. Goteti, and E. F. Wood. 2006. “Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling.” J. Clim. 19 (13): 3088–3111. https://doi.org/10.1175/JCLI3790.1.
Solaymani, H. R., and A. K. Gosain. 2015. “Assessment of climate change impacts in a semi-arid watershed in Iran using regional climate models.” J. Water Clim. Change 6 (1): 161–180. https://doi.org/10.2166/wcc.2014.076.
Taylor, K. E., R. J. Stouffer, and G. A. Meehl. 2012. “An overview of CMIP5 and the experiment design.” Bull. Am. Meteorol. Soc. 93 (4): 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1.
Turner, A. G., and H. Annamalai. 2012. “Climate change and the South Asian summer monsoon.” Nat. Clim. Change 2 (8): 587–595. https://doi.org/10.1038/nclimate1495.
van Vuuren, D. P., et al. 2011. “The representative concentration pathways: An overview.” Clim. Change 109 (1–2): 5–31. https://doi.org/10.1007/s10584-011-0148-z.
Wang, S., C. Jones, and R. Döscher. 2016. Report on the sensitivity of the West African and South Asian monsoon to model resolution. Brussels, Belgium: European Union.
Whitehead, P. G., et al. 2015. “Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: Low flow and flood statistics.” Environ. Sci. Processes Impacts 17 (6): 1057–1069. https://doi.org/10.1039/C4EM00619D.
Wyser, K., M. Evaldsson, and C. Jones. 2016. Contribution of high resolution with improved ESMs in terms of documented metrics. Brussels, Belgium: European Union.
Wyser, K., C. Jones, and T. Königk. 2014. Assessment of the benefits of increased atmospheric resolution on simulated Southern Ocean variability and ocean momentum drag. Brussels, Belgium: European Union.
Wyser, K., G. Strandberg, J. Caesar, and L. Gohar. 2017. Documentation of changes in climate variability and extremes simulated by the HELIX AGCMs at the 3 SWLs and comparison to changes in equivalent SST/SIC low-resolution CMIP5 projections. Brussels, Belgium: European Union.
Yang, Y. C. E., P. A. Ray, C. M. Brown, A. F. Khalil, and W. H. Yu. 2014. “Estimation of flood damage functions for river basin planning: A case study in Bangladesh.” Nat. Hazard. 75 (3): 2773–2791. https://doi.org/10.1007/s11069-014-1459-y.
Zhang, Y., Q. You, C. Chen, and J. Ge. 2016. “Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China.” Atmos. Res. 178–179: 521–534. https://doi.org/10.1016/j.atmosres.2016.04.018.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 23Issue 12December 2018

History

Received: Aug 21, 2017
Accepted: May 31, 2018
Published online: Sep 17, 2018
Published in print: Dec 1, 2018
Discussion open until: Feb 17, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Khaled Mohammed [email protected]
Research Assistant, Institute of Water and Flood Management, Bangladesh Univ. of Engineering and Technology, Dhaka 1000, Bangladesh. Email: [email protected]
A. K. M. Saiful Islam, Ph.D. [email protected]
Professor, Institute of Water and Flood Management, Bangladesh Univ. of Engineering and Technology, Dhaka 1000, Bangladesh (corresponding author). Email: [email protected]
G. M. Tarekul Islam, Ph.D. [email protected]
Professor, Institute of Water and Flood Management, Bangladesh Univ. of Engineering and Technology, Dhaka 1000, Bangladesh. Email: [email protected]
Lorenzo Alfieri, Ph.D. [email protected]
Scientific Officer, Directorate for Space, Security and Migration, European Commission, Joint Research Centre, Ispra 21027, Italy. Email: [email protected]
Md. Jamal Uddin Khan [email protected]
Research Assistant, Institute of Water and Flood Management, Bangladesh Univ. of Engineering and Technology, Dhaka 1000, Bangladesh. Email: [email protected]
Sujit Kumar Bala, Ph.D. [email protected]
Professor, Institute of Water and Flood Management, Bangladesh Univ. of Engineering and Technology, Dhaka 1000, Bangladesh. Email: [email protected]
Mohan Kumar Das, Ph.D. [email protected]
Research Associate, Institute of Water and Flood Management, Bangladesh Univ. of Engineering and Technology, Dhaka 1000, Bangladesh. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share