Case Studies
Sep 28, 2013

Using SWAT-VSA to Predict Diffuse Phosphorus Pollution in an Agricultural Catchment with Several Aquifers

Publication: Journal of Hydrologic Engineering
Volume 19, Issue 7

Abstract

Recent improvements in the Soil and Water Assessment Tool (SWAT) model take account of hydrological processes controlling a variable source area (VSA). This model, SWAT-VSA, accounts for changes in the nature and extent of the VSA over the course of a hydrological cycle by considering global catchment storage capacity, which varies with soil moisture between threshold values whose spatial distribution is determined by topography. The objective of this work is to evaluate the contribution of several aquifers with specific storage capacities to global catchment storage, its dynamics; and subsequent effects on VSA and non-point-source pollution. For this purpose, a method called SWAT-mVSA (SWAT-multi VSA) was used in a catchment representative of the agricultural conditions of large perialpine lakes to calculate soluble reactive phosphorus (SRP) fluxes because SRP has a major influence on receiving waters. SWAT-mVSA predicted components of the hydrological balance and SRP fluxes more accurately than SWAT-VSA. This underlines the importance of VSAs in mobilizing and transporting non-point-source pollutants such as nutrients, pesticides, or bacteria.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This work was supported by Comité InterSyndical pour l’Assainissement du Lac du Bourget (CISALB), the Rhône, Méditerranée et Corse (RM&C) water supply agency, the SAFEGE Recherche et Dévelopement (R&D) department, and INRA Unité Mixte de Recherche—Centre de Recherche sur les Réseaux Trophiques et Limniques (UMR CARRTEL). The authors sincerely thank Isabelle Beaudin and Aubert Michaud from Institut de Recherche en Agroenvironnement (IRDA)-Quebec for their unconditional help.

References

Arnold, J. G., and Fohrer, N. (2005). “SWAT2000: Current capabilities and research opportunities in applied watershed modelling.” Hydrol. Process., 19(3), 563–572.
Beven, K. J., and Kirkby, M. J. (1979). “A physically based, variable contributing area model of basin hydrology.” Hydrol. Sci. Bull., 23–24(1), 43–69.
Boiffin, J., Papy, F., and Eimberck, M. (1988). “Influence des systèmes de culture sur les risques d’érosion par ruissellement concentre. Analyse des conditions de déclanchement de l’érosion.” Agronomie, 8(8), 663–673 (in French).
Borah, D. K., and Bera, M. (2003). “Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases.” Trans., ASAE, 46(6), 1553–1556.
Crosby, D. A. (2006). “The effect of DEM resolution on the computation of hydrologically significant topograhic attributes.” M.S. thesis, Univ. of South Florida, Tampa.
De Marsily, G. (1981). Hydrologie quantitative, Masson, Paris.
Direction Départementale de l’Agriculture (DDA). (1980). “Étude des ressources en eau de l’Albannais.”, Chambéry, France.
Dorioz, J. M., Aurousseau, P., and Bourrié, G. (2007). “Le phosphore dans l’environnement: bilan des connaissances sur les impacts, les transferts et la gestion environnementale.” Océanis, 33(1–2), 331 (in French).
Dunne, T., and Black, R. D. (1970). “Partial area contributions to storm runoff in a small New England watershed.” Water Resour. Res., 6(5), 1296–1311.
Easton, Z. M., Fuka, D. R., Walter, M. T., Cowan, D. M., Schneiderman, E. M., and Steenhuis, T. S. (2008). “Re-conceptualizing the Soil and Water Assessment Tool (SWAT) model to predict runoff from variable source areas.” J. Hydrol., 348(3–4), 279–291.
ArcGIS 9.2 [Computer software]. Redlands, CA, ESRI.
European Environment Agency (EEA). (2010). “Nitrogen and phosphorus in rivers.” Copenhagen, Denmark, 〈http://www.eea.europa.eu/data-and-maps/indicators/nitrogen-and-phosphorus-in-rivers〉 (Jul. 1, 2012).
European Union (EU). (1991). “Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water treatment.” Brussels.
Frankenberger, J. R., Brooks, E. S., Walter, M. T., Walter, M. F., and Steenhuis, T. S. (1999). “A GIS-based variable source area model.” Hydrol. Process., 13(6), 804–822.
Fontaine, T. A., Cruickshank, T. S., Arnold, J. G., and Hotchkiss, R. H. (2002). “Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT).” J. Hydrol., 262(1–4), 209–223.
Gburek, W. J., Drungil, C. C., Srinivasan, M. S., Needelman, B. A., and Woodward, D. E. (2002). “Variable-source-area controls on phosphorus transport: Bridging the gap between research and design.” J. Soil Water Conserv., 57(6), 534–543.
Gineste, P. (1998). “Contribution de l’imagerie satellitaire Radar ERS à la détection des zones saturées et à la modélisation hydrologique d’un petit bassin versant agricole par Top-Model.” Ecole Nationale du Génie Rural des Eaux et des Forêts, AgroParisTech, Paris.
Green, C. H., and Van Griensven, A. (2008). “Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds.” Environ. Modell. Software, 23, 422–434.
Hahn, C. (2012). “Phosphorus losses from grassland dominated catchments: Modeling and experimental validation.” Ph.D. thesis, Eidgenössische Technische Hochschule, Zurich.
Heathwaite, A. L., Quinn, P. F., and Hewett, C. J. M. (2005). “Modelling and managing critical source areas of diffuse pollution from agricultural land using flow connectivity simulation.” J. Hydrol., 304(1–4), 446–461.
Horton, R. E. (1941). “An approach toward a physical interpretation of infiltration-capacity.” Soil Sci. Soc. Am. Proc., 5, 399–417.
JMP 5.3 [Computer software]. Cary, NC, SAS Institute.
Jha, M., Pan, Z., Takle, E. S., and Gu, R. (2004). “Impacts of climate change on streamflow in the upper Mississippi River basin: A regional climate model perspective.” J. Geophys. Res., 109(9), D09105.
Jordan-Meille, L. (1998). “Mode de transfert du phosphore d’origine diffuse dans un petit bassin rural lémanique.” Ph.D. thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL), 256.
Jordan-Meille, L., Trevisan, D., and Dorioz, J. M. (2007). “Variabilité des mécanismes de transfert du phosphore à l’échelle bassin versant: Le cas d’un bassin versant de la région Lémanique et sa portée générale.” Océanis, 33(1–2), 183–206 (in French).
Lee, F. G., Rast, W., and Jones, R. A. (1978). “Eutrophication of water bodies: Insights for an age-old problem.” Environ. Sci. Technol., 12(8), 900–908.
Lyon, S. W., Walter, M. T., Gérard-Marchant, P., and Steenhuis, T. S. (2004). “Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation.” Hydrol. Process. 18(15), 2757–2771.
Merot, P. (1988). “Les zones de sources à surface variable et la question de leur localisation.” Hydrologie Continentale, 3(2), 105–115.
Michaud, A. R., Giroux, M., Landry, C., Deslandes, J., Beaudin, I., and Lauzier, R. (2007). “Prévention des transferts diffus de phosphore en bassins-versants agricoles: Perspectives Québécoises et de l’état du Vermont.” Océanis, 33(1–2), 285–320.
Monteith, J. L. (1965). “Evaporation and the environment.” The state and movement of water in living organisms, Society of Experimental Biology, Cambridge University Press, Cambridge, U.K.
Neitsch, S. L., Arnold, J. G., Kiniry, J. R., and Williams, J. R. (2005). “Soil and Water Assessment Tool theoretical documentation, version 2005.” Grassland, Soil and Water Research Laboratory, Agricultural Research Service, Temple, TX, 〈http://www.swat.tamu.edu/media/1292/SWAT2005theory.pdf〉 (Mar. 01, 2009).
Poss, R. (2007). “Stock et flux de phosphore dans les écosystèmes terrestres et aquatiques, et impacts environnementaux. Introduction à la première journée à Paris.” Océanis, 33(1–2), 13–16 (in French).
Poulenard, J., Perette, Y., Fanget, B., Quetin, P., Trevisan, D., and Dorioz, J. M. (2009). “Infrared spectroscopy tracing of sediment sources in a small rural watershed (French Alps).” Sci. Total Environ., 407(8), 2808–2819.
Roche, M. (1963). Hydrology de surface, Office de la recherche scientifique et technique outre-mer (O.R.S.T.O.M), Gauthier-Villars, Paris, 429.
Schneiderman, E. M., et al. (2007). “Incorporating variable source area hydrology into the curve number based generalized watershed loading function model.” Hydrol. Process., 21(25), 3420–3430.
Schoumans, O. F., et al. eds. (2011). “Mitigation options for reducing nutrient emissions from agriculture. A study amongst European member states of cost action 869.”, Alterra, Wageningen, Netherlands.
Steenhuis, T. S., Winchell, M., Rossing, J., Zollweg, J. A., and Walter, M. F. (1995). “SCS runoff equation revisited for variable-source runoff areas.” J. Irrig. Drain. Eng., 234–238.
Trevisan, D., Dorioz, J. M., Poulenard, J., Quetin, P., Prigent Combaret, C., and Merot, P. (2010). “Mapping of critical source areas for diffuse fecal bacterial pollution in extensively grazed watersheds.” Water Res., 44(13), 3847–3860.
Trevisan, D., Quetin, P., Barbet, D., and Dorioz, J. M. (2012). “POPEYE: A river-load oriented model to evaluate the efficiency of environmental policy measures for reducing phosphorus losses.” J. Hydrol., 450–451, 254–266.
Van Griensven, A., Ndomba, P., Yalew, S., and Kilonzo, F. (2012). “Critical review of SWAT applications in the upper Nile basin countries.” Hydrol. Earth Syst. Sci., 16(9), 3371–3381.
Vansteelant, J. Y., Trevisan, D., Perron, L., Dorioz, J. M., and Roybin, D. (1997). “Conditions d’apparition du ruissellement dans les cultures annuelles de la région lémanique. Relation avec le fonctionnement des exploitations agricoles.” Agronomie, 17, 65–82 (in French).
World Reference Base (WRB). (2006). “World reference base for soil resources.”, FAO, Rome.
Zhang, W., and Montgomery, D. R. (1994). “Digital elevation model, landscape representation and hydrologic simulation.” Water Resour. Res., 30(4), 1019–1028.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 19Issue 7July 2014
Pages: 1462 - 1470

History

Received: Dec 20, 2012
Accepted: Sep 26, 2013
Published online: Sep 28, 2013
Discussion open until: Feb 28, 2014
Published in print: Jul 1, 2014

Permissions

Request permissions for this article.

Authors

Affiliations

Florent Pezet, Ph.D. [email protected]
SAFEGE, Savoie Technolac, 48 av. du Lac du Bourget, BP 318, 73377 Le Bourget du Lac, France (corresponding author). E-mail: [email protected]
Jean-Marcel Dorioz [email protected]
Professor, Institut National de la Recherche Agronomique (INRA), UMR CARRTEL, 75 av. de Corzent, 74203 BP 11, Thonon les Bains, France. E-mail: [email protected]
Philippe Quetin [email protected]
Institut National de la Recherche Agronomique (INRA), UMR CARRTEL, 75 av. de Corzent, 74203 BP 11, Thonon les Bains, France. E-mail: [email protected]
Michel Lafforgue, Ph.D. [email protected]
SAFEGE, CIRAH, 15-27, Rue du Port, Parc de l’Ile, 92022 Nanterre Cedex, France. E-mail: [email protected]
Dominique Trevisan, Ph.D. [email protected]
Institut National de la Recherche Agronomique (INRA), UMR CARRTEL, 75 av. de Corzent, 74203 BP 11, Thonon les Bains, France. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share