Technical Papers
Oct 31, 2012

Applicability of the LASH Model for Hydrological Simulation of the Grande River Basin, Brazil

Publication: Journal of Hydrologic Engineering
Volume 18, Issue 12

Abstract

The Lavras Simulation of Hydrology (LASH) hydrological model is classified as a deterministic, semiconceptual, and spatially distributed model. This model was developed to make available a tool for hydrological analysis in watersheds with a limited database, and it has presented good streamflow predictions. The aim of this study was to calibrate and validate the LASH model for hydrological simulation of the following watersheds which make up the headwaters of the Grande River basin (southern Minas Gerais state, Brazil): the Aiuruoca, Grande, Sapucaí, and Verde river basins. The LASH model simulated adequately the hydrological regimes of the previously mentioned watersheds, presenting satisfactory performances for all the watersheds, which can be emphasized by the Nash-Sutclifffe coefficient (CNS) values greater than 0.70. The analysis of the main hydrological processes simulated by the LASH model confirmed that the results were consistent with the hydrological characteristics observed on the respective watersheds. The simulated daily flow-duration curves demonstrated good agreement in relation to the observed curves, indicating only a few errors in estimation of extreme streamflow events. It was found that the LASH model can be applied for hydrological simulation of headwater watersheds situated in the Grande River basin under land-use scenarios and meteorological and environmental conditions other than the ones used in this study. Therefore, it can be considered an important tool for planning and management of water resources in this region.

Get full access to this article

View all available purchase options and get full access to this article.

References

Allen, R. G., Pereira, L. S., Raes, D., and Smith, M. (1998). “Crop evapotranspiration: Guidelines for computing crop water requirements.” Irrigation and Drainage Paper 56, Food and Agricultural Organization of the United Nations, Rome.
Almeida, A. C., and Soares, J. V. (2003). “Comparação entre uso de água em plantações de Eucalyptus grandis e floresta ombrófila densa (mata Atlântica) na costa leste do Brasil.” Revista Árvore, 27(2), 159–170.
Almeida, A. C., Soares, J. V., Landsberg, J. J., and Rezende, G. D. (2007). “Growth and water balance of eucalypitus grandis hybrid plantations in Brazil during a rotation for pulp production.” Forest Ecol. Manag., 251(1–2), 10–21.
Alvarenga, C. C. (2010). “Indicadores hidrológicos do solo para identificação de áreas de recarga de água subterrânea.” M.S. dissertation, Universidade Federal de Lavras, Lavras, Brazil.
Andrade, M. A., Mello, C. R., and Beskow, S. (2013). “Simulação hidrológica em uma bacia hidrográfica representativa dos Latossolos na região Alto Rio Grande, MG.” Revista Brasileira de Engenharia Agrícola e Ambiental, 17(1), 69–76.
Araujo, A. R. (2006). “Solos da bacia do Alto Rio Grande (MG): Base para estudos hidrológicos e aptidão agrícola.” Ph.D. thesis, Universidade Federal de Lavras, Lavras, Brazil.
Arnold, J. G., Srinivasin, R., Muttiah, R. S., and Williams, J. R. (1998). “Large area hydrologic modeling and assessment. Part I: Model development.” J. Am. Water Resour. Assoc., 34(1), 73–89.
Beskow, S. (2009). “LASH model: A hydrological simulation toll in gis framework.” Ph.D. thesis, Universidade Federal de Lavras, Lavras, Brazil.
Beskow, S., Mello, C. R., and Norton, L. D. (2011a). “Development, sensitivity and uncertainty analysis of LASH model.” Scientia Agricola, 68(3), 265–393.
Beskow, S., Mello, C. R., Norton, L. D., and da Silva, A. M. (2011b). “Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions.” Catena, 86(3), 160–171.
Bormann, H., Breuer, L., Gräff, T., and Huisman, J. A. (2007). “Analyzing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis.” Ecol. Model., 209(1), 29–40.
Bravo, J. M., Allasia, D., Paz, A. R., Collischonn, W., and Tucci, C. E. M. (2012). “Coupled hydrologic-hydraulic modeling of the upper Paraguay River basin.” J. Hydrol. Eng., 17(5), 635–646.
Collischonn, B. (2006). “Uso da precipitação estimada pelo satélite TRMM em modelo hidrológico distribuído.” M.S. dissertation, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Collischonn, W. (2001). “Simulação hidrológica de grandes bacias.” Ph.D. thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
Collischonn, W., Allasia, D. G., Silva, B. C., and Tucci, C. E. M. (2007). “The MGB/IPH model for large-scale rainfall-runoff modeling.” Hydrol. Sci. J., 52(5), 878–895.
Collischonn, W., Tucci, C. E. M., Haas, R., and Andreolli, I. (2005). “Forecasting River Uruguay flow using rainfall forecasts from a regional weather-prediction model.” J. Hydrol., 305(1), 87–98.
Condé, R. C. C. (1995). “Fluxos de vapor d’água em um cerrado sencu stricto do Distrito Federal.” M.S. dissertation, Universidade de Brasília, Brasília, Brazil.
Correia, F. W. S., Alvala, R. C. S., and Manzi, A. O. (2004). “Distribuição sazonal e global da umidade do solo para inicialização em modelo de previsão de tempo e clima.” Proc., Congresso Brasileiro de Meteorologia, Universidade Federal do Ceará (UFCE), Fortaleza, Ceará.
Dickinson, R. E. (1984). “Modeling evapotranspiration for the three-dimensional global climate models.” Climate Processes and Climate Sensitivity, American Geophycial Union, Washington, DC, 58–72.
Environmental Systems Research Institute (ESRI). (2004). Redands, CA, 265p.
Fagundes, J. L., et al. (2006). “Características morfogênicas e estruturais do capim-braquiária em pastagem adubada com nitrogênio avaliadas nas quatro estações do ano.” Revista Brasileira de Zootecnia, 35(1), 21–29.
Flanagan, D. C., and Nearing, M. A. (1998). “USDA-water erosion prediction project (WEPP) hillslope profile and watershed model documentation.”, USDA, West Lafayette, IN.
Gomes, N. M. (2005). “Variabilidade espacial de atributos físico-hídricos do solo da sub-bacia hidrográfica do Ribeirão Marcela na Região do Alto Rio Grande, MG.” M.S. dissertation, Universidade Federal de Lavras, Lavras, Brazil.
Gong, Y., Shen, Z., Liu, R., Wang, X., and Chen, T. (2010). “Effect of watershed subdivision on SWAT modeling with consideration of parameter uncertainty.” J. Hydrol. Eng., 15(12), 1070–1074.
Junqueira Júnior, J. A. (2006). “Escoamento de nascentes associado à variabilidade espacial de atributos físicos e uso do solo em uma bacia hidrográfica de cabeceira do Rio Grande—MG.” M.S. dissertation, Universidade Federal de Lavras, Lavras, Brazil.
Kuntschik, G. (2004). “Estimativa de biomassa vegetal lenhosa em cerrado por meio de sensoriamento remoto óptico e de radar.” Ph.D. thesis, Universidade de São Paulo, São Paulo, Brazil.
Licciardelo, F., Zema, D. A., Zimbone, S. M., and Bingner, R. L. (2007). “Runoff and soil erosion evaluation by the AnnAGNPS model in a small Mediterranean watershed.” Trans. ASABE, 50(5), 1585–1593.
Lima, W. P. (1986). Princípios de hidrologia florestal para o manejo de bacias hidrográficas, Escola Superior de Agricultura “Luiz de Queiroz,” São Paulo, Brazil.
Lohmann, D., Raschke, E., Nijssen, B., and Lettenmaier, D. P. (1998). “Regional scale hydrology: I., formulation of the VIC-2L model coupled to a routing model.” Hydrol. Sci. J., 43(1), 131–141.
Manfron, P. A., Dourado Neto, D., Pereira, A. R., Bonnecarrére, R. A. G., Medeiros, S. L. P., and Pilau, F. G. (2003). “Modelo do índice de área foliar da cultura do milho.” Revista Brasileira de Agrometeorologia, 11(2), 333–342.
Marques, J. J., Carvalho, L. M. T., and Mello, C. R. (2008). “Vulnerabilidade natural e qualidade ambiental associadas a hidroelétricas.” Zoneamento ecológico-econômico do Estado de Minas Gerais: Zoneamento e cenários exploratórios, Editora UFLA, Lavras, Brazil, 125–128.
Marques Filho, A. O., Dallarosa, R. G., and Pachêco, V. B. (2005). “Radiação solar e distribuição vertical de área foliar em floresta: reserva biológica do Cuieiras, ZF2, Manaus.” Acta Amazônica, Manaus, 35(4), 427–436.
Marsik, M., and Waylen, P. (2006). “An application of the distributed hydrologic model CASC2D to a tropical montane watershed.” J. Hydrol., 330(3–4), 481–495.
Mello, C. R., Lima, J. M., da Silva, A. M., and Lopes, D. (2003). “Abstração inicial da precipitação em microbacia hidrográfica com escoamento efêmero.” Revista Brasileira de Engenharia Agrícola e Ambiental, 7(3), 494–500.
Mello, C. R., Viola, M. R., Norton, L. D., Silva, A. M., and Weimar, F. A. (2008). “Development and application of a simple hydrologic model simulation for a Brazilian headwater basin.” Catena, 75(3), 235–247.
Miranda, A. C., et al. (1996). “Amazonian deforestation and climate.” Carbon dioxide fluxes over a cerrado sensu stricto in central Brazil, Wiley, New York, 353–364.
Mishra, S. K., Singh, V. P., Sansalone, J. J., and Aravamuthan, V. (2003). “A modified SCS-CN method: Characterization and testing.” Water Resour. Manag., 17(1), 37–68.
Mishra, S. K., Sahu, R. K., Eldho, T. I., and Jain, M. K. (2006). “An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology.” Water Resour. Manag., 20(5), 643–660.
Moriasi, D. N., Arnold, J. G., van Liew, M. W., Binger, R. L., Harmel, R. D., and Veith, T. (2007). “Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.” Trans. ASABE, 50(3), 885–900.
Muleta, M. K. (2012). “Improving model performance using season-based evaluation.” J. Hydrol. Eng., 17(1), 191–200.
Nash, J. E., and Sutcliffe, J. V. (1970). “River flow forecasting through conceptual models part I—A discussion of principles.” J. Hydrol., 10(3), 282–290.
Notter, B., Macmillan, L., Viriroli, D., Weingartner, R., and Liniger, H. P. (2007). “Impacts of environmental change on water resources in the Mt. Kenya Region.” J. Hydrol., 343(3–4), 266–278.
Pan, F., and King, A. (2012). “Downscaling 1-km topographic index distributions to a finer resolution for the TOPMODEL-based GCM hydrological modeling.” J. Hydrol. Eng., 17(2), 243–251.
Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A. (1993). “Infiltration and soil water movement.” Handbook of Hydrology, McGraw-Hill, New York, 1–51.
Ribeiro Neto, A. (2006). “Simulação hidrológica na Amazônia: Rio Madeira.” Ph.D. thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
Roo, A. P. J. de, Wesseling, C. G., and Ritsema, C. J. (1996). “LISEM: A single event physically-based hydrologic and soil erosion model for drainage basins: I., theory, input and output.” Hydrolog. Process., 10(8), 1107–1117.
Shuttleworth, W. J. (1993). “Evaporation.” Handbook of Hydrology, McGraw-Hill, New York, 1–53.
Thanapakpawin, P., Richey, J., Thomas, D., Rodda, S., Campbell, B., and Logsdon, M. (2007). “Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand.” J. Hydrol., 334(1–2), 215–230.
Tucci, C. E. M. (2005). Modelos hidrológicos, 2nd Ed., Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
van Liew, M. W., Arnold, J. G., and Garbrecht, J. D. (2003). “Hydrologic simulation on agricultural watersheds: Choosing between two models.” Trans. ASAE, 46(6), 1539–1551.
Viola, M. R. (2008). “Simulação hidrológica na região Alto Rio Grande a montante do Reservatório de Camargos/CEMIG.” M.S. dissertation, Universidade Federal de Lavras, Lavras, Brazil.
Viola, M. R., Mello, C. R., Acerbi Junior, F. W., and Silva, A. M. (2009). “Modelagem hidrológica na bacia hidrográfica do Rio Aiuruoca, MG.” Revista Brasileira de Engenharia Agrícola e Ambiental, 13(5), 581–590.
Viola, M. R., Mello, C. R., Pinto, D. B. F., Mello, J. M., and Avila, L. F. (2010). “Métodos de interpolação espacial para o mapeamento da precipitação pluvial.” Revista Brasileira de Engenharia Agrícola e Ambiental, 14(9), 970–978.
von Stackelberg, N. O., Chescheir, G. M., Skaggs, R. W., and Amatya, D. M. (2007). “Simulation of the hydrologic effects of afforestation in the Tacuarembó River Basin, Uruguay.” Trans. ASABE, 50(2), 455–468.
Wigmosta, M. S., Vail, L. W., and Lettenmaier, D. P. (1994). “A distributed hydrology-vegetation model for complex terrain.” Water Resour. Res., 30(6), 1665–1679.
Zaapa, M. (2002). “Multiple-response verification of a distributed hydrological model at different spatial scales.” Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland.
Zhang, H. G., Fu, S. H., Fang, W. H., Imura, H., and Zhang, X. C. (2007). “Potential effects of climate change on runoff in the Yellow River Basin of China.” Trans. ASABE, 50(1–2), 911–918.
Zhou, M. C., Ishidaira, H., Hapuarachchi, J. M., Kiem, A. S., and Takeuchi, K. (2006). “Estimating potential evapotranspiration using Shuttleworth-Wallace model and NOAA-AVHRR NDVI data to feed a distributed hydrological model over the Mekong River basin.” J. Hydrol., 327(1–2), 151–173.

Information & Authors

Information

Published In

Go to Journal of Hydrologic Engineering
Journal of Hydrologic Engineering
Volume 18Issue 12December 2013
Pages: 1639 - 1652

History

Received: Feb 3, 2012
Accepted: Oct 29, 2012
Published online: Oct 31, 2012
Discussion open until: Mar 31, 2013
Published in print: Dec 1, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Marcelo Ribeiro Viola
Professor, Hydraulics Laboratory, Forest Engineering Dept., Federal Univ. of Tocantis, C.P. 66, 77.402-970 Gurupi, TO, Brazil.
Carlos Rogério de Mello [email protected]
Professor, Soil and Water Engineering Group, Engineering Dept., Federal Univ. of Lavras, C.P. 3037, 37200-000 Lavras, MG, Brazil (corresponding author). E-mail: [email protected]
Samuel Beskow
Professor, Center of Technological Development/Water Resources Engineering, Federal Univ. of Pelotas, 01 Gomes Carneiro St., 96010-670 Pelotas, RS, Brazil.
Lloyd Darrell Norton
Researcher, Agronomy and Agricultural and Biological Engineering, USDA-ARS National Soil Erosion Research Laboratory, 275 South Russell St., Purdue Univ., West Lafayette, IN 47907.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share