Abstract

The composite nature of geosynthetic clay liners and the contrasting water retention behavior of its bentonite and geotextile components has presented a unique challenge that current water retention models do not fully address. This paper proposes a new water retention model that can accurately describe the bimodal behavior of geosynthetic clay liners across the entire suction range (102106  kPa) on the adsorption path. The model was formulated based on the pore structures and dominant suction regimes present in geosynthetic clay liners. In addition to the soil adsorptive and capillary water, it incorporates the geotextile capillary regime, which encompasses the pore water fraction in the geotextile, bentonite extrusion into the geotextile, and additionally, any volume changes due to bentonite swelling (including polymer effects). The parameters defined in this conceptual model describe the physical characteristics of bentonite and the geotextile fraction in the geosynthetic clay liner (GCL). The proposed model’s performance was assessed and validated using extensive experimental water retention data sets. The statistical analysis indicated that the proposed model provides a better fit than other models, especially in the low-suction range, and is adept at predicting the water retention behavior of the geosynthetic clay liners on the wetting path.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

This research project was supported by the Australian Research Council’s Discovery Projects funding scheme (Project No. DP190103682). This support is gratefully acknowledged.

References

Abuel-Naga, H., and A. Bouazza. 2010. “A novel laboratory technique to determine the water retention curve of geosynthetic clay liners.” Geosynth. Int. 17 (5): 313–322. https://doi.org/10.1680/gein.2010.17.5.313.
Acikel, A. S., A. Bouazza, W. P. Gates, R. M. Singh, and R. K. Rowe. 2020. “A novel transient gravimetric monitoring technique implemented to GCL osmotic suction control.” Geotext. Geomembr. 48 (6): 755–767. https://doi.org/10.1016/j.geotexmem.2020.05.002.
Acikel, A. S., A. Bouazza, R. M. Singh, W. P. Gates, and R. K. Rowe. 2022. “Challenges of the filter paper suction measurements in geosynthetic clay liners: Effects of method, time, capillarity, and hysteresis.” Geotech. Test. J. 45 (2): 449–467. https://doi.org/10.1520/GTJ20200168.
Acikel, A. S., W. P. Gates, R. M. Singh, A. Bouazza, D. G. Fredlund, and R. K. Rowe. 2018a. “Time-dependent unsaturated behaviour of geosynthetic clay liners.” Can. Geotech. J. 55 (12): 1824–1836. https://doi.org/10.1139/cgj-2017-0646.
Acikel, A. S., W. P. Gates, R. M. Singh, A. Bouazza, and R. K. Rowe. 2018b. “Insufficient initial hydration of GCLs from some subgrades: Factors and causes.” Geotext. Geomembr. 46 (6): 770–781. https://doi.org/10.1016/j.geotexmem.2018.06.007.
Alonso, E. E., J. Vaunat, and A. Gens. 1999. “Modelling the mechanical behaviour of expansive clays.” Eng. Geol. 54 (1–2): 173–183. https://doi.org/10.1016/S0013-7952(99)00079-4.
Anderson, R., M. T. Rayhani, and R. K. Rowe. 2012. “Laboratory investigation of GCL hydration from clayey sand subsoil.” Geotext. Geomembr. 31 (Apr): 31–38. https://doi.org/10.1016/j.geotexmem.2011.10.005.
ASTM. 2016. Standard test method for fluid loss of clay component of geosynthetic clay liners. ASTM D5891. West Conshohocken, PA: ASTM.
ASTM. 2018a. Standard test method for measuring mass per unit of geosynthetic clay liners. ASTM D5993. West Conshohocken, PA: ASTM.
ASTM. 2018b. Standard test method for swell index of clay mineral component of geosynthetic clay liners. ASTM D5890. West Conshohocken, PA: ASTM.
ASTM. 2020. Standard test method for determining average bonding peel strength between top and bottom layers of needle-punched geosynthetic clay liners. ASTM D6496. West Conshohocken, PA: ASTM.
Barclay, A., and M. T. Rayhani. 2013. “Effect of temperature on hydration of geosynthetic clay liners in landfills.” Waste Manage. Res. 31 (3): 265–272. https://doi.org/10.1177/0734242X12471153.
Battaglia, S., L. Leoni, and F. Sartori. 2006. “A method for determining the CEC and chemical composition of clays via XRF.” Clay Miner. 41 (3): 717–725. https://doi.org/10.1180/0009855064130214.
Beddoe, R. A., W. A. Take, and R. K. Rowe. 2011. “Water-retention behavior of geosynthetic clay liners.” J. Geotech. Geoenviron. Eng. 137 (11): 1028–1038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000526.
Bouazza, A. 2002. “Geosynthetic clay liners.” Geotext. Geomembr. 20 (1): 3–17. https://doi.org/10.1016/S0266-1144(01)00025-5.
Bouazza, A. 2021. “Interaction between PFASs and geosynthetic liners: Current status and the way forward.” Geosynth. Int. 28 (2): 214–223. https://doi.org/10.1680/jgein.20.00033.
Bouazza, A., M. A. Ali, W. P. Gates, and R. K. Rowe. 2017a. “New insight on geosynthetic clay liner hydration: The key role of subsoils mineralogy.” Geosynth. Int. 24 (2): 139–150. https://doi.org/10.1680/jgein.16.00022.
Bouazza, A., M. A. Ali, R. K. Rowe, W. P. Gates, and A. El-Zein. 2017b. “Heat mitigation in geosynthetic composite liners exposed to elevated temperatures.” Geotext. Geomembr. 45 (5): 406–417. https://doi.org/10.1016/j.geotexmem.2017.05.004.
Bouazza, A., and J. J. Bowders. 2010. Geosynthetic clay liners for waste containment facilities. London: CRC Press.
Bouazza, A., M. Freund, and H. Nahlawi. 2006a. “Water retention of nonwoven polyester geotextiles.” Polym. Test. 25 (8): 1038–1043. https://doi.org/10.1016/j.polymertesting.2006.07.002.
Bouazza, A., and W. P. Gates. 2014. “Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry.” Geosynth. Int. 21 (2): 151–167. https://doi.org/10.1680/gein.14.00006.
Bouazza, A., and M. A. Rouf. 2021. “Hysteresis of the water retention curves of geosynthetic clay liners in the high suction range.” Geotext. Geomembr. 49 (4): 1079–1084. https://doi.org/10.1016/j.geotexmem.2021.03.002.
Bouazza, A., M. A. Rouf, R. M. Singh, R. K. Rowe, and W. P. Gates. 2017c. “Gas advection-diffusion in geosynthetic clay liners with powder and granular bentonites.” Geosynth. Int. 24 (6): 607–614. https://doi.org/10.1680/jgein.17.00027.
Bouazza, A., R. M. Singh, R. K. Rowe, and F. Gassner. 2014. “Heat and moisture migration in a geomembrane–GCL composite liner subjected to high temperatures and low vertical stresses.” Geotext. Geomembr. 42 (5): 555–563. https://doi.org/10.1016/j.geotexmem.2014.08.002.
Bouazza, A., J. G. Zornberg, J. S. McCartney, and H. Nahlawi. 2006b. “Significance of unsaturated behaviour of geotextiles in earthen structures.” Aust. Geomech. J. 41 (3): 133–142.
Bradshaw, S. L., C. H. Benson, and J. Scalia IV. 2013. “Hydration and cation exchange during subgrade hydration and effect on hydraulic conductivity of geosynthetic clay liners.” J. Geotech. Geoenviron. Eng. 139 (4): 526–538. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000793.
Burger, C. A., and C. D. Shackelford. 2001. “Evaluating dual porosity of pelletised diatomaceous earth using bimodal soil-water characteristic curve functions.” Can. Geotech. J. 38 (1): 53–66. https://doi.org/10.1139/t00-084.
Carnero-Guzman, G. G., A. Bouazza, W. P. Gates, R. K. Rowe, and R. McWatters. 2021. “Hydration/dehydration behaviour of geosynthetic clay liners in the Antarctic environment.” Geotext. Geomembr. 49 (1): 196–209. https://doi.org/10.1016/j.geotexmem.2020.10.020.
Carnero-Guzman, G. G., W. P. Gates, A. Bouazza, L. P. Aldridge, and H. N. Bordallo. 2019. “Using neutron spectroscopy to measure soil-water retention at high suction ranges.” Can. Geotech. J. 56 (12): 1999–2003. https://doi.org/10.1139/cgj-2017-0718.
Chen, J., H. Salihoglu, C. H. Benson, W. J. Likos, and T. B. Edil. 2019. “Hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners permeated with coal combustion product leachates.” J. Geotech. Geoenviron. Eng. 145 (9): 04019038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002105.
Chevrier, B., D. Cazaux, G. Didier, M. Gamet, and D. Guyonnet. 2012. “Influence of subgrade, temperature and confining pressure on GCL hydration.” Geotext. Geomembr. 33 (Aug): 1–6. https://doi.org/10.1016/j.geotexmem.2012.02.003.
Cui, Y. J. 2017. “On the hydro-mechanical behaviour of MX80 bentonite-based materials.” J. Rock Mech. Geotech. Eng. 9 (3): 565–574. https://doi.org/10.1016/j.jrmge.2016.09.003.
Daniel, D. E. 1993. “Effects of partial wetting on the performance of the bentonite component of a geosynthetic clay liner.” In Geosynthetics’ 93, 1482–1496. Roseville, MN: Industrial Fabrics Association International.
Delage, P. 2007. “Microstructure features in the behaviour of engineered barriers for nuclear waste disposal.” In Experimental unsaturated soil mechanics, 11–32. Berlin: Springer.
Fehervari, A., W. P. Gates, A. Bouazza, and C. D. Shackelford. 2019. “Assessment of Bentonite compatibility with salinity using centrifugation-based water retention.” Geotech. Test. J. 42 (2): 275–295. https://doi.org/10.1520/GTJ20170207.
Fredlund, D. G., and A. Xing. 1994. “Equations for the soil-water characteristic curve.” Can. Geotech. J. 31 (4): 521–532. https://doi.org/10.1139/t94-061.
Frydman, S., and R. Baker. 2009. “Theoretical soil-water characteristic curves based on adsorption, cavitation, and a double porosity model.” Int. J. Geomech. 9 (6): 250–257. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:6(250).
Gates, W. P., et al. 2021. “Neutron scattering quantification of unfrozen pore water in frozen mud.” Microporous Mesoporous Mater. 324 (Sep): 111267. https://doi.org/10.1016/j.micromeso.2021.111267.
Gates, W. P., G. Dumadah, and A. Bouazza. 2018. “Micro X-ray visualisation of the interaction of geosynthetic clay liner components after partial hydration.” Geotext. Geomembr. 46 (6): 739–747. https://doi.org/10.1016/j.geotexmem.2018.07.006.
Gates, W. P., A. MacLeod, A. Fehervari, A. Bouazza, D. Gibbs, R. Hackney, D. L. Callahan, and M. Watts. 2020. “Interactions of per-and polyfluoralkyl substances (PFAS) with landfill liners.” Adv. Environ. Eng. Res. 1 (4): 1. https://doi.org/10.21926/aeer.2004007.
Gens, A., and E. E. Alonso. 1992. “A framework for the behaviour of unsaturated expansive clays.” Can. Geotech. J. 29 (6): 1013–1032. https://doi.org/10.1139/t92-120.
Ghavam-Nasiri, A., A. El-Zein, D. Airey, R. K. Rowe, and A. Bouazza. 2020. “Thermal desiccation of geosynthetic clay liners under brine pond conditions.” Geosynth. Int. 27 (6): 593–605. https://doi.org/10.1680/jgein.20.00020.
Gitirana, G. F. N., and D. G. Fredlund. 2004. “Soil-water characteristic curve equation with independent properties.” J. Geotech. Geoenviron. Eng. 130 (2): 209–212. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(209).
Grim, R. E. 1968. Clay mineralogy. 2nd ed. New York: McGraw-Hill.
Herbert, E., S. Balibar, and F. Caupin. 2006. “Cavitation pressure in water.” Phys. Rev. E 74 (4): 041603. https://doi.org/10.1103/PhysRevE.74.041603.
Hornsey, W. P., J. Scheirs, W. P. Gates, and A. Bouazza. 2010. “The impact of mining solutions/liquors on geosynthetics.” Geotext. Geomembr. 28 (2): 191–198. https://doi.org/10.1016/j.geotexmem.2009.10.008.
Iryo, T., and R. K. Rowe. 2003. “On the hydraulic behavior of unsaturated nonwoven geotextiles.” Geotext. Geomembr. 21 (6): 381–404. https://doi.org/10.1016/S0266-1144(03)00046-3.
Jensen, D. K., M. Tuller, L. W. de Jonge, E. Arthur, and P. Moldrup. 2015. “A new two-stage approach to predicting the soil water characteristic from saturation to oven-dryness.” J. Hydrol. 521 (Feb): 498–507. https://doi.org/10.1016/j.jhydrol.2014.12.018.
Laird, D. A. 1996. “Model for crystalline swelling of 2: 1 phyllosilicates.” Clays Clay Miner. 44 (4): 553–559. https://doi.org/10.1346/CCMN.1996.0440415.
Lau, Z. C., A. Bouazza, and W. P. Gates. 2022a. “Influence of polymer enhancement on water uptake, retention and barrier performance of geosynthetic clay liners.” Geotext. Geomembr. 50 (4): 590–606. https://doi.org/10.1016/j.geotexmem.2022.02.006.
Lau, Z. C., A. Bouazza, and W. P. Gates. 2022b. “Water exchange across a subgrade-GCL interface as impacted by polymers and environmental conditions.” Geotext. Geomembr. 50 (1): 40–54. https://doi.org/10.1016/j.geotexmem.2021.08.005.
Lee, J. M., and C. D. Shackelford. 2005. “Solution retention capacity as an alternative to the swell index test for sodium bentonite.” Geotech. Test. J. 28 (1): 61–70. https://doi.org/10.1520/GTJ12520.
Li, X., J. H. Li, and L. M. Zhang. 2014. “Predicting bimodal soil–water characteristic curves and permeability functions using physically based parameters.” Comput. Geotech. 57 (Apr): 85–96. https://doi.org/10.1016/j.compgeo.2014.01.004.
Liu, J., S. Song, X. Cao, Q. Meng, H. Pu, Y. Wang, and J. Liu. 2020. “Determination of full-scale pore size distribution of Gaomiaozi bentonite and its permeability prediction.” J. Rock Mech. Geotech. Eng. 12 (2): 403–413. https://doi.org/10.1016/j.jrmge.2019.12.005.
Liu, Y., A. Bouazza, W. P. Gates, and R. K. Rowe. 2015. “Hydraulic performance of geosynthetic clay liners to sulfuric acid solutions.” Geotext. Geomembr. 43 (1): 14–23. https://doi.org/10.1016/j.geotexmem.2014.11.004.
Lu, N. 2016. “Generalized soil water retention equation for adsorption and capillarity.” J. Geotech. Geoenviron. Eng. 142 (10): 04016051. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001524.
Lu, N., and M. Khorshidi. 2015. “Mechanisms for soil-water retention and hysteresis at high suction range.” J. Geotech. Geoenviron. Eng. 141 (8): 04015032. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001325.
Luo, S., and N. Lu. 2021. “Validating the generality of a closed-form equation for soil water isotherm.” J. Geotech. Geoenviron. Eng. 147 (12): 04021138. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002681.
Mazzieri, F., and G. Di Emidio. 2015. “Hydraulic conductivity of a dense prehydrated geosynthetic clay liner.” Geosynth. Int. 22 (1): 138–148. https://doi.org/10.1680/gein.14.00037.
Nahlawi, H., A. Bouazza, and J. Kodikara. 2007. “Characterisation of geotextiles water retention using a modified capillary pressure cell.” Geotext. Geomembr. 25 (3): 186–193. https://doi.org/10.1016/j.geotexmem.2006.12.001.
Navarro, V., L. Asensio, G. De la Morena, X. Pintado, and A. Yustres. 2015. “Differentiated intra-and inter-aggregate water content models of mx-80 bentonite.” Appl. Clay Sci. 118 (Dec): 325–336. https://doi.org/10.1016/j.clay.2015.10.015.
Norrish, K. 1954. “The swelling of montmorillonite.” Discuss. Faraday Soc. 18: 120–134. https://doi.org/10.1039/df9541800120.
Norrish, K., and J. T. Hutton. 1969. “An accurate X-ray spectrographic method for the analysis of a wide range of geological samples.” Geochim. Cosmochim. Acta 33 (4): 431–453. https://doi.org/10.1016/0016-7037(69)90126-4.
Or, D., and M. Tuller. 2002. “Cavitation during desaturation of porous media under tension.” Water Resour. Res. 38 (5): 1–14. https://doi.org/10.1029/2001WR000282.
Pasha, A. Y., A. Khoshghalb, and N. Khalili. 2017. “Hysteretic model for the evolution of water retention curve with void ratio.” J. Eng. Mech. 143 (7): 04017030. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001238.
Rayhani, M. T., R. K. Rowe, R. W. I. Brachman, W. A. Take, and G. Siemens. 2011. “Factors affecting GCL hydration under isothermal conditions.” Geotext. Geomembr. 29 (6): 525–533. https://doi.org/10.1016/j.geotexmem.2011.06.001.
Revil, A., and N. Lu. 2013. “Unified water isotherms for clayey porous materials.” Water Resour. Res. 49 (9): 5685–5699. https://doi.org/10.1002/wrcr.20426.
Romero, E., G. Della Vecchia, and C. Jommi. 2011. “An insight into the water retention properties of compacted clayey soils.” Géotechnique 61 (4): 313–328. https://doi.org/10.1680/geot.2011.61.4.313.
Rouf, M. A., A. Bouazza, R. M. Singh, W. P. Gates, and R. K. Rowe. 2016a. “Water vapour adsorption and desorption in GCLs.” Geosynth. Int. 23 (2): 86–99. https://doi.org/10.1680/jgein.15.00034.
Rouf, M. A., R. M. Singh, A. Bouazza, R. K. Rowe, and W. P. Gates. 2016b. “Gas permeability of partially hydrated geosynthetic clay liner under two stress conditions.” Environ. Geotech. 3 (5): 325–333. https://doi.org/10.1680/envgeo.14.00009.
Rowe, R. K. 2014. “Performance of GCLs in liners for landfill and mining applications.” Environ. Geotech. 1 (1): 3–21. https://doi.org/10.1680/envgeo.13.00031.
Rowe, R. K., and A. Y. AbdelRazek. 2021. “Performance of multicomponent GCLs in high salinity impoundment applications.” Geotext. Geomembr. 49 (2): 358–368. https://doi.org/10.1016/j.geotexmem.2020.10.007.
Rowe, R. K., M. T. Rayhani, W. A. Take, G. Siemens, and R. W. I. Brachman. 2011. “GCL hydration under simulated daily thermal cycles.” Geosynth. Int. 18 (4): 196–205. https://doi.org/10.1680/gein.2011.18.4.196.
Sanchez, M., A. Gens, L. Guimaraes, and S. Olivella. 2006. “Response of an unsaturated expansive clay under high temperature changes.” In Unsaturated soils 2006, 2488–2499. Reston, VA: ASCE.
Sánchez, M., A. Gens, M. V. Villar, and S. Olivella. 2016. “Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils.” Int. J. Geomech. 16 (6): D4016015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000728.
Sarabian, T., and M. T. Rayhani. 2013. “Hydration of geosynthetic clay liners from clay subsoil under simulated field conditions.” Waste Manage. 33 (1): 67–73. https://doi.org/10.1016/j.wasman.2012.08.010.
Satyanaga, A., H. Rahardjo, E. C. Leong, and J. Y. Wang. 2013. “Water characteristic curve of soil with bimodal grain-size distribution.” Comput. Geotech. 48 (Mar): 51–61. https://doi.org/10.1016/j.compgeo.2012.09.008.
Scalia, J., C. H. Benson, G. L. Bohnhoff, T. B. Edil, and C. D. Shackelford. 2014. “Long-term hydraulic conductivity of a bentonite-polymer composite permeated with aggressive inorganic solutions.” J. Geotech. Geoenviron. Eng. 140 (3): 04013025. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001040.
Seiphoori, A., A. Ferrari, and L. Laloui. 2014. “Water retention behaviour and microstructural evolution of MX-80 bentonite during wetting and drying cycles.” Géotechnique 64 (9): 721–734. https://doi.org/10.1680/geot.14.P.017.
Seiphoori, A., L. Laloui, A. Ferrari, M. Hassan, and W. H. Khushefati. 2016. “Water retention and swelling behaviour of granular bentonites for application in geosynthetic clay liner (GCL) systems.” Soils Found. 56 (3): 449–459. https://doi.org/10.1016/j.sandf.2016.04.011.
Shackelford, C. D., C. H. Benson, T. Katsumi, T. B. Edil, and L. Lin. 2000. “Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids.” Geotext. Geomembr. 18 (2–4): 133–161. https://doi.org/10.1016/S0266-1144(99)00024-2.
Sumner, M. E., and W. P. Miller. 1996. “Cation exchange capacity and exchange coefficients.” Methods Soil Anal.: Part 3 Chem. Methods 5: 1201–1229. https://doi.org/10.2136/sssabookser5.3.c40.
Tian, K., C. H. Benson, and W. J. Likos. 2016. “Hydraulic conductivity of geosynthetic clay liners to low-level radioactive waste leachate.” J. Geotech. Geoenviron. Eng. 142 (8): 04016037. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001495.
Tian, K., W. J. Likos, and C. H. Benson. 2019. “Polymer elution and hydraulic conductivity of bentonite–polymer composite geosynthetic clay liners.” J. Geotech. Geoenviron. Eng. 145 (10): 04019071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002097.
Tincopa, M., and A. Bouazza. 2021. “Water retention curves of a geosynthetic clay liner under non-uniform temperature-stress paths.” Geotext. Geomembr. 49 (5): 1270–1279. https://doi.org/10.1016/j.geotexmem.2021.04.005.
Tincopa, M., A. Bouazza, R. K. Rowe, and H. Rahardjo. 2020. “Back-analysis of the water retention curve of a GCL on the wetting path.” Geosynth. Int. 27 (5): 523–537. https://doi.org/10.1680/jgein.20.00016.
Touze-Foltz, N., H. Bannour, C. Barral, and G. Stoltz. 2016. “A review of the performance of geosynthetics for environmental protection.” Geotext. Geomembr. 44 (5): 656–672. https://doi.org/10.1016/j.geotexmem.2016.05.008.
Tuller, M., and D. Or. 2005. “Water films and scaling of soil characteristic curves at low water contents.” Water Resour. Res. 41 (9): W09403. https://doi.org/10.1029/2005WR004142.
Van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vasko, S., H. Y. Jo, C. H. Benson, T. B. Edil, and T. Katsumi. 2001. “Hydraulic conductivity of partially prehydrated geosynthetic clay liners permeated with aqueous calcium chloride solutions.” In Vol. 2001 of Proc., Geosynthetics Conf., 685–699. Roseville, MN: Industrial Fabrics Association International.
Villar, M. V., and A. Lloret. 2008. “Influence of dry density and water content on the swelling of a compacted bentonite.” Appl. Clay Sci. 39 (1–2): 38–49. https://doi.org/10.1016/j.clay.2007.04.007.
Wijaya, M., and E. C. Leong. 2016. “Equation for unimodal and bimodal soil–water characteristic curves.” Soils Found. 56 (2): 291–300. https://doi.org/10.1016/j.sandf.2016.02.011.
Wireko, C., B. Zainab, K. Tian, and T. Abichou. 2020. “Effect of specimen preparation on the swell index of bentonite-polymer GCLs.” Geotext. Geomembr. 48 (6): 875–885. https://doi.org/10.1016/j.geotexmem.2020.06.006.
Yang, H., H. Rahardjo, E. C. Leong, and D. G. Fredlund. 2004. “Factors affecting drying and wetting soil-water characteristic curves of sandy soils.” Can. Geotech. J. 41 (5): 908–920. https://doi.org/10.1139/t04-042.
Zhang, L., and Q. Chen. 2005. “Predicting bimodal soil–water characteristic curves.” J. Geotech. Geoenviron. Eng. 131 (5): 666–670. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:5(666).

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 12December 2022

History

Received: Oct 26, 2021
Accepted: Aug 19, 2022
Published online: Oct 12, 2022
Published in print: Dec 1, 2022
Discussion open until: Mar 12, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Zhi Chong Lau [email protected]
Ph.D. Student, Dept. of Civil Engineering, Monash Univ., 23 College Walk, Melbourne, VIC 3800, Australia. Email: [email protected]
Professor, Dept. of Civil Engineering, Monash Univ., 23 College Walk, Melbourne, VIC 3800, Australia (corresponding author). ORCID: https://orcid.org/0000-0003-1768-1503. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401. ORCID: https://orcid.org/0000-0003-1753-129X. Email: [email protected]
Associate Professor, Institute for Frontier Materials, Deakin Univ., Melbourne, VIC 3125, Australia. ORCID: https://orcid.org/0000-0001-7388-0289. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share