Technical Papers
Sep 8, 2022

Long-Term Response of Piles to Cyclic Lateral Loading Following Vibratory and Impact Driving in Water-Saturated Sand

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 11

Abstract

The influence of the pile installation by vibratory or impact driving on the response to subsequent cyclic lateral loading, as faced in the offshore environment, is investigated numerically. Large-deformation analyses of the pile installation process using the coupled Eulerian–Lagrangian method considering partially drained conditions are performed. Following the installation, one million lateral load cycles are simulated using the high-cycle accumulation (HCA) model. The lower the hydraulic conductivity of the soil during driving, the higher the accumulation of lateral deformation when the pile is subjected to high-cyclic loading. The assumption of ideally drained conditions during pile driving results in a lower accumulation, in particular for the vibratory-driven pile. Compared to the influence of the drainage conditions during driving, the influence of the installation method is found to be of less importance. While the vibratory-driven piles tend to give less resistance to monotonic lateral loading for most conditions, slightly lower permanent pile head rotations after one million lateral loading cycles are observed compared to the impact-driven piles.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request. numgeo can be freely downloaded from www.numgeo.de.

References

Achmus, M., K. Schmoor, V. Herwig, and B. Matlock. 2020. “Lateral bearing behaviour of vibro- and impact-driven large-diameter piles in dense sand.” Geotechnik 43 (3): 147–159. https://doi.org/10.1002/gete.202000006.
Andresen, L., and H. X. Khoa. 2013. “LDFE analysis of installation effects for offshore anchors and foundations.” In Installation effects in geotechnical engineering, 162–168. Rotterdam, Netherlands: CRC Press.
Anusic, I., B. M. Lehane, G. R. Eiksund, and M. A. Liingaard. 2019. “Influence of installation method on static lateral response of displacement piles in sand.” Geotech. Lett. 9 (3): 193–197. https://doi.org/10.1680/jgele.18.00191.
Argani, L. P., and A. Gajo. 2021. “A novel insight into vertical ground motion modelling in earthquake engineering.” Int. J. Numer. Anal. Methods Geomech. 46 (1): 164–186. https://doi.org/10.1002/nag.3295.
Aubram, D., F. Rackwitz, P. Wriggers, and S. A. Savidis. 2015. “An ALE method for penetration into sand utilizing optimization-based mesh motion.” Comput. Geotech. 65 (12): 241–249. https://doi.org/10.1016/j.compgeo.2014.12.012.
Augarde, C. E., S. J. Lee, and D. Loukidis. 2021. “Numerical modelling of large deformation problems in geotechnical engineering: A state-of-the-art review.” Soils Found. 61 (6): 1718–1735. https://doi.org/10.1016/j.sandf.2021.08.007.
Benson, D. J. 1992. “Computational methods in Lagrangian and Eulerian hydrocodes.” Comput. Methods Appl. Mech. Eng. 99 (2): 235–394. https://doi.org/10.1016/0045-7825(92)90042-I.
Bienen, B., S. Fan, M. Schroder, and M. F. Randolph. 2021. “Effect of the installation process on monopile lateral response.” In Vol. 174 of Proc., Institution of Civil Engineers—Geotechnical Engineering, 530–548. London: ICE Publishing.
Bojanowski, C. 2014. “Numerical modeling of large deformations in soil structure interaction problems using FE, EFG, SPH, and MM-ALE formulations.” Arch. Appl. Mech. 84 (5): 743–755. https://doi.org/10.1007/s00419-014-0830-5.
Bond, A. J., and R. J. Jardine. 1991. “Effects of installing displacement piles in a high OCR clay.” Geotechnique 41 (3): 341–363. https://doi.org/10.1680/geot.1991.41.3.341.
Burali d’Arezzo, F., S. Haigh, M. Talesnick, and Y. Ishihara. 2015. “Measuring horizontal stresses during jacked pile installation.” Proc. Inst. Civ. Eng. Geotech. Eng. 168 (4): 306–318. https://doi.org/10.1680/geng.14.00069.
Burd, H. J., et al. 2020. “PISA design model for monopiles for offshore wind turbines: Application to a marine sand.” Geotechnique 70 (11): 1048–1066. https://doi.org/10.1680/jgeot.18.P.277.
Ceccato, F., and P. Simonini. 2017. “Numerical study of partially drained penetration and pore pressure dissipation in piezocone test.” Acta Geotech. 12 (1): 195–209. https://doi.org/10.1007/s11440-016-0448-6.
Chow, F. C., R. J. Jardine, J. F. Nauroy, and F. Brucy. 1997. “Time-related increases in the shaft capacities of driven piles in sand.” Geotechnique 47 (2): 353–361. https://doi.org/10.1680/geot.1997.47.2.353.
Ciantia, M. O., M. Arroyo, J. Butlanska, and A. Gens. 2016. “DEM modelling of cone penetration tests in a double-porosity crushable granular material.” Comput. Geotech. 73 (14): 109–127. https://doi.org/10.1016/j.compgeo.2015.12.001.
Cyril, P. A., S. T. Kok, M. K. Song, A. Chan, J. Y. Wong, and W. K. Choong. 2019. “Smooth particle hydrodynamics for the analysis of stresses in soil around Jack-in Pile.” Eur. J. Environ. Civ. Eng. 26 (1): 1–27. https://doi.org/10.1080/19648189.2019.1649198.
Dafalias, Y. F., and M. T. Manzari. 2004. “Simple plasticity sand model accounting for fabric change effects.” J. Eng. Mech. 130 (6): 622–634. https://doi.org/10.1061/(ASCE)0733-9399(2004)130:6(622).
DeJong, J. T., M. F. Randolph, and D. J. White. 2003. “Interface load transfer degradation during cyclic loading: A microscale investigation.” Soils Found. 43 (4): 81–93. https://doi.org/10.3208/sandf.43.4_81.
DeJong, J. T., D. J. White, and M. F. Randolph. 2006. “Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry.” Soils Found. 46 (1): 15–28. https://doi.org/10.3208/sandf.46.15.
DGGT. 2012. Empfehlungen des Arbeitskreises “Pfaehle” der Deutschen Gesellschaft fuer Geotechnik. Hamburg, Germany: Ernst & Sohn (Wiley).
Dijkstra, J., W. Broere, and O. M. Heeres. 2011. “Numerical simulation of pile installation.” Comput. Geotech. 38 (5): 612–622. https://doi.org/10.1016/j.compgeo.2011.04.004.
Dyson, G. J., and M. F. Randolph. 2001. “Monotonic lateral loading of piles in calcareous sand.” J. Geotech. Geoenviron. Eng. 127 (4): 346–352. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(346).
Fan, S., B. Bienen, and M. F. Randolph. 2021a. “Centrifuge study on effect of installation method on lateral response of monopiles in sand.” Int. J. Phys. Modell. Geotech. 21 (1): 40–52. https://doi.org/10.1680/jphmg.19.00013.
Fan, S., B. Bienen, and M. F. Randolph. 2021b. “Effects of monopile installation on subsequent lateral response in sand. I: Pile installation.” J. Geotech. Geoenviron. Eng. 147 (5): 04021021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002467.
Fan, S., B. Bienen, and M. F. Randolph. 2021c. “Effects of monopile installation on subsequent lateral response in sand. II: Lateral loading.” J. Geotech. Geoenviron. Eng. 147 (5): 04021022. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002504.
Giridharan, S., S. Gowda, D. F. Stolle, and C. Moormann. 2020. “Comparison of UBCSAND and hypoplastic soil model predictions using the material point method.” Soils Found. 60 (4): 989–1000. https://doi.org/10.1016/j.sandf.2020.06.001.
Gottsche, K. M., U. Steinhagen, and P. M. Juhl. 2015. “Numerical evaluation of pile vibration and noise emission during offshore pile driving.” Appl. Acoust. 99 (4): 51–59. https://doi.org/10.1016/j.apacoust.2015.05.008.
Grabe, J., and T. Pucker. 2015. “Improvement of bearing capacity of vibratory driven open-ended tubular piles.” In Proc., 3rd Int. Symp. on Frontiers in Offshore Geotechnics Frontiers in Offshore Geotechnics III, 551–556. Rotterdam, Netherlands: CRC Press.
Hamad, F. 2016. “Formulation of the axisymmetric CPDI with application to pile driving in sand.” Comput. Geotech. 74 (12): 141–150. https://doi.org/10.1016/j.compgeo.2016.01.003.
Hamann, T. 2015. “Zur Modellierung wassergesattigter Boden unter dynamischer Belastung und groBen Bodenverformungen am Beispiel der Pfahleinbringung.” Ph.D. thesis, Institute of Geotechnical Engineering and Construction Management, Univ. of Hamburg.
Hamann, T., G. Qiu, and J. Grabe. 2015. “Application of a coupled Eulerian-Lagrangian approach on pile installation problems under partially drained conditions.” Comput. Geotech. 63 (Feb): 279–290. https://doi.org/10.1016/j.compgeo.2014.10.006.
Hauser, L., and H. F. Schweiger. 2021. “Numerical study on undrained cone penetration in structured soil using G-PFEM.” Comput. Geotech. 133 (Mar): 104061. https://doi.org/10.1016/j.compgeo.2021.104061.
Heerema, E. P. 1978. “Predicting pile driveability: Heather as an illustration of the friction fatigue theory.” In Proc., Society of Petroleum Engineers—SPE European Petroleum Conf. Austin, TX: OnePetro.
Heins, E., and J. Grabe. 2017. “Class-A-prediction of lateral pile deformation with respect to vibratory and impact pile driving.” Comput. Geotech. 86 (Jan): 108–119. https://doi.org/10.1016/j.compgeo.2017.01.007.
Henke, S. 2014. “Untersuchungen zur Pfropfenbildung infolge der Installation offener Profile in granularen Boeden.” Habilitation, Veroffentlichungen des Instituts fur Geotechnik und Baubetrieb.
Henke, S., M. Milatz, and J. Grabe. 2011. “Numerical simulations of acoustic emissions due to offshore-pile installation.” PAMM 11 (1): 629–630. https://doi.org/10.1002/pamm.201110304.
Hoffmann, B., J. Labenski, and C. Moormann. 2020. “Effects of vibratory driving of monopiles on soil conditions and their cyclic lateral load bearing behavior.” In Proc., 4th Int. Symp. on Frontiers in Offshore Geotechnics. Rotterdam, Netherlands: CRC Press.
Hu, Q., F. Han, M. Prezzi, R. Salgado, and M. Zhao. 2021. “Lateral load response of large-diameter monopiles in sand.” Geotechnique 10 (Jan): 1–16. https://doi.org/10.1680/jgeot.20.00002.
Jardine, R. J., B. T. Zhu, P. Foray, and Z. X. Yang. 2013. “Measurement of stresses around closed-ended displacement piles in sand.” Geeotechnique 63 (1): 1–17. https://doi.org/10.1680/geot.9.P.137.
Jostad, H. P., B. M. Dahl, A. Page, N. Sivasithamparam, and H. Sturm. 2020. “Evaluation of soil models for improved design of offshore wind turbine foundations in dense sand.” Geotechnique 70 (8): 682. https://doi.org/10.1680/jgeot.19.TI.034.
Labenski, J., and C. Moormann. 2019. “Lateral bearing behaviour of vibratory-driven monopiles: A modified p-y approach based on experimental observations of scaled model tests.” In Proc., 17th European Conf. on Soil Mechanics and Geotechnical Engineering. London: International Society for Soil Mechanics and Geotechnical Engineering.
Le, V. H., F. Remspecher, and F. Rackwitz. 2021. “Development of numerical models for the long-term behaviour of monopile foundations under cyclic loading considering the installation effects.” Soil Dyn. Earthquake Eng. 150 (Jun): 106927. https://doi.org/10.1016/j.soildyn.2021.106927.
Li, L., W. Wu, M. Hesham El Naggar, G. Mei, and R. Liang. 2019. “DEM analysis of the sand plug behavior during the installation process of open-ended pile.” Comput. Geotech. 109 (8): 2333. https://doi.org/10.1016/j.compgeo.2019.01.014.
Liyanapathirana, D. S. 2009. “Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay.” Comput. Geotech. 36 (5): 851–860. https://doi.org/10.1016/j.compgeo.2009.01.006.
Machaček, J. 2020. “Contributions to the numerical modelling of saturated and unsaturated soils.” Ph.D. thesis, Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology.
Machaček, J., P. Staubach, M. Tafili, H. Zachert, and T. Wichtmann. 2021. “Investigation of three sophisticated constitutive soil models: From numerical formulations to element tests and the analysis of vibratory pile driving tests.” Comput. Geotech. 138 (14): 104276. https://doi.org/10.1016/j.compgeo.2021.104276.
Machaček, J., T. Wichtmann, H. Zachert, and T. Triantafyllidis. 2018. “Long-term settlements of a ship lock: Measurements vs. FE-prediction using a high cycle accumulation model.” Comput. Geotech. 97 (5): 222–232. https://doi.org/10.1016/j.compgeo.2018.01.009.
Martinelli, M., and V. Galavi. 2021. “Investigation of the material point method in the simulation of cone penetration tests in dry sand.” Comput. Geotech. 130 (14): 103923. https://doi.org/10.1016/j.compgeo.2020.103923.
Monforte, L., A. Gens, M. Arroyo, M. Manica, and J. M. Carbonell. 2021. “Analysis of cone penetration in brittle liquefiable soils.” Comput. Geotech. 134 (12): 104123. https://doi.org/10.1016/j.compgeo.2021.104123.
Mortara, G., and A. Mangiola. 2007. “Cyclic shear stress degradation and post-cyclic behaviour from sand-steel interface direct shear tests.” Can. Geotech. J. 44 (7): 739–752. https://doi.org/10.1139/t07-019.
Navas, P., M. Molinos, M. M. Stickle, D. Manzanal, A. Yague, and M. Pastor. 2021. “Explicit meshfree u-p-w solution of the dynamic Biot formulation at large strain.” Comput. Part. Mech. 25 (2): 775–792. https://doi.org/10.1007/s10596-020-09964-3.
Niemunis, A., and I. Herle. 1997. “Hypoplastic model for cohesionless soils with elastic strain range.” Mech. Cohesive-frict. Mater. 2 (4): 279–299. https://doi.org/10.1002/(SICI)1099-1484(199710)2:4%3C279::AID-CFM29%3E3.0.CO;2-8.
Niemunis, A., T. Wichtmann, and T. Triantafyllidis. 2005. “A high-cycle accumulation model for sand.” Comput. Geotech. 32 (4): 245–263. https://doi.org/10.1016/j.compgeo.2005.03.002.
Numgeo. 2022. “Geotechnical finite element analyses.” Accessed August 18, 2022. https://www.numgeo.de.
Page, A. M., R. T. Klinkvort, S. Bayton, Y. Zhang, and H. P. Jostad. 2021. “A procedure for predicting the permanent rotation of monopiles in sand supporting offshore wind turbines.” Mar. Struct. 75 (1): 102813. https://doi.org/10.1016/j.marstruc.2020.102813.
Phuong, N. T., F. Tol, A. Elkadi, and A. Rohe. 2014. “Modelling of pile installation using the material point method (MPM).” Numer. Methods Geotech. Eng. 271–276.
Qiu, G., S. Henke, and J. Grabe. 2011. “Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformation.” Comput. Geotech. 38 (1): 30–39. https://doi.org/10.1016/j.compgeo.2010.09.002.
Randolph, M., and S. Gourvenec. 2017. Offshore geotechnical engineering, 1–528. London: CRC Press.
Simon, B. R., J. S.-S. Wu, O. C. Zienkiewicz, and D. K. Paul. 1986. “Evaluation of u-w and u-pi finite element methods for the dynamic response of saturated porous media using one-dimensional models.” Int. J. Numer. Anal. Methods Geomech. 10 (5): 461–482. https://doi.org/10.1002/nag.1610100502.
Soga, K., E. Alonso, A. Yerro, K. Kumar, and S. Bandara. 2016. “Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method.” Geotechnique 66 (3): 248–273. https://doi.org/10.1680/jgeot.15.LM.005.
Staubach, P. 2022. “Contributions to the numerical modelling of pile installation processes and high- cyclic loading of soils.” Ph.D. thesis, Institute of Foundation Engineering and Soil Mechanics, Ruhr-Univ. Bochum.
Staubach, P., and J. Machaček. 2019. “Influence of relative acceleration in saturated sand: Analytical approach and simulation of vibratory pile driving tests.” Comput. Geotech. 112 (Apr): 173–184. https://doi.org/10.1016/j.compgeo.2019.03.027.
Staubach, P., J. Machaček, M. C. Moscoso, and T. Wichtmann. 2020a. “Impact of the installation on the long-term cyclic behaviour of piles in sand: A numerical study.” Soil Dyn. Earthquake Eng. 138 (Mar): 106223. https://doi.org/10.1016/j.soildyn.2020.106223.
Staubach, P., J. Machaček, R. Sharif, and T. Wichtmann. 2021a. “Back-analysis of model tests on piles in sand subjected to long-term lateral cyclic loading: Impact of the pile installation and application of the HCA model.” Comput. Geotech. 134 (41): 104018. https://doi.org/10.1016/j.compgeo.2021.104018.
Staubach, P., J. Machaček, J. Skowronek, and T. Wichtmann. 2021b. “Vibratory pile driving in water-saturated sand: Back-analysis of model tests using a hydro-mechanically coupled CEL method.” Soils Found. 61 (1): 144–159. https://doi.org/10.1016/j.sandf.2020.11.005.
Staubach, P., J. Machaček, M. Tafili, and T. Wichtmann. 2022b. “A high-cycle accumulation model for clay and its application to monopile foundations.” Acta Geotech. 17 (3): 677–698. https://doi.org/10.1007/s11440-021-01446-9.
Staubach, P., J. Machaček, L. Tschirschky, and T. Wichtmann. 2022a. “Enhancement of a high-cycle accumulation model by an adaptive strain amplitude and its application to monopile foundations.” Int. J. Numer. Anal. Methods Geomech. 46 (2): 315–338. https://doi.org/10.1002/nag.3301.
Staubach, P., J. Machaček, and T. Wichtmann. 2020b. “Impact of the installation on the long-term behaviour of offshore wind turbine pile foundations.” In Proc., 4th Int. Symp. on Frontiers in Offshore Geotechnics, 573–583. London: Taylor & Francis Group.
Staubach, P., J. Machaček, and T. Wichtmann. 2021c. “Large-deformation analysis of pile installation with subsequent lateral loading: Sanisand vs. hypoplasticity.” Soil Dyn. Earthquake Eng. 151 (4): 106964. https://doi.org/10.1016/j.soildyn.2021.106964.
Staubach, P., J. Machaček, and T. Wichtmann. 2022c. “Mortar contact discretisation methods incorporating interface models based on hypoplasticity and Sanisand: Application to vibratory pile driving.” Comput. Geotech. 146 (Jan): 104677.
Staubach, P., J. Machaček, and T. Wichtmann. 2022d. “Novel approach to apply existing constitutive soil models to the modelling of interfaces.” Int. J. Numer. Anal. Methods Geomech. 46 (7): 1241–1271. https://doi.org/10.1002/nag.3344.
Staubach, P., and T. Wichtmann. 2020. “Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model.” Comput. Geotech. 124 (4): 103553. https://doi.org/10.1016/j.compgeo.2020.103553.
Stein, P., J. Gattermann, E. Daumlechner, N. Hinzmann, and J. Stahlmann. 2020. ZykLaMP Großmaßstäbliche Modellversuche zur lateralen Tragfahigkeit offener Stahlrohrpfahle unter zyklischer Belastung bei verschiedenen Einbringverfahren. Braunschweig, Germany: Technische Universität Braunschweig.
Taylor, C., and P. Hood. 1973. “A numerical solution of the Navier-Stokes equations using the finite element technique.” Comput. Fluids 1 (1): 73–100. https://doi.org/10.1016/0045-7930(73)90027-3.
The Overseas Coastal Area Development Institute of Japan. 2002. Technical standards and commentaries for port and Harbour facilities in Japan. 3-2-4 Kasumigaseki. Tokyo: Japan Ports and Harbours Association.
Tolooiyan, A., and K. Gavin. 2011. “Modelling the cone penetration test in sand using cavity expansion and arbitrary lagrangian eulerian finite element methods.” Comput. Geotech. 38 (4): 482–490. https://doi.org/10.1016/j.compgeo.2011.02.012.
Tsetas, A., et al. 2020. “Experimental identification of the dynamic behaviour of pile-soil system installed by means of three different pile-driving techniques.” In Proc., Eurodyn 2020: XI Int. Conf. on Structural Dynamics, 3005–3015. Volos, Greece: European Association for Structural Dynamics.
Tsouvalas, A. 2020. “Underwater noise emission due to offshore pile installation: A review.” Energies 13 (12): 3037–3073. https://doi.org/10.3390/en13123037.
UBA. 2011. Empfehlung von Lärmschutzwerten bei der errichtung von offshore-Windenergieanlagen (OWEA). Dessau-Roßlau, Germany: Umweltbundesamt.
Wang, D., B. Bienen, M. Nazem, Y. Tian, J. Zheng, T. Pucker, and M. F. Randolph. 2015. “Large deformation finite element analyses in geotechnical engineering.” Comput. Geotech. 65 (Jun): 104–114. https://doi.org/10.1016/j.compgeo.2014.12.005.
White, D. J., and M. D. Bolton. 2004. “Displacement and strain paths during plane-strain model pile installation in sand.” Geotechnique 54 (6): 375–397. https://doi.org/10.1680/geot.2004.54.6.375.
White, D. J., and B. M. Lehane. 2004. “Friction fatigue on displacement piles in sand.” Geotechnique 54 (10): 645–658. https://doi.org/10.1680/geot.2004.54.10.645.
Wichtmann, T. 2005. “Explicit accumulation model for non-cohesive soils under cyclic loading.” Ph.D. thesis, Institute of Foundation Engineering and Soil Mechanics, Ruhr-Univ. Bochum.
Wichtmann, T. 2016. “Soil behaviour under cyclic loading: Experimental observations, constitutive description and applications.” Habilitation, Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology.
Wichtmann, T., J. Machaček, H. Zachert, and H. Gunther. 2018. Vol. 96 of Validierung eines hochzyklischen Akkumulationsmodells anhand von Modellversuchen und Messungen an realen Bauwerken. Berlin: Wiley.
Wolffersdorff, P.-A. 1996. “A hypoplastic relation for granular materials with a predefined limit state surface.” Mech. Cohesive-frict. Mater. 1 (3): 251–271. https://doi.org/10.1002/(SICI)1099-1484(199607)1:3%3C251::AID-CFM13%3E3.0.CO;2-3.
Yang, Z., R. Jardine, B. Zhu, C. Tsuha, and P. Foray. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yang, Z. X., Y. Y. Gao, R. J. Jardine, W. B. Guo, and D. Wang. 2020. “Large deformation finite- element simulation of displacement-pile installation experiments in sand.” J. Geotech. Geoenviron. Eng. 146 (6): 4020044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002271.
Zachert, H. 2015. “Zur Gebrauchstauglichkeit von Gründungen für Offshore-Windenergieanlagen.” Dissertation, Institute of Soil Mechanics and Rock Mechanics, Karlsruhe Institute of Technology.
Zachert, H., T. Wichtmann, P. Kudella, T. Triantafyllidis, and U. Hartwig. 2020. “Inspection of a high- cycle accumulation model for sand based on recalculations of a full-scale test on a gravity base foundation for offshore wind turbines.” Comput. Geotech. 126 (10): 103727. https://doi.org/10.1016/j.compgeo.2020.103727.
Zhang, W., J. Qiang, X. Zou, W. Zhang, H. Yuan, and W. Wu. 2021. “Interpretation of cone penetration test in clay with smoothed particle finite element method.” Acta Geotech. 16 (8): 2593–2607. https://doi.org/10.1007/s11440-021-01217-6.
Zienkiewicz, O. C., C. T. Chang, and P. Bettess. 1980. “Drained, undrained, consolidating and dynamic behaviour assumptions in soils.” Geotechnique 30 (4): 385–395. https://doi.org/10.1680/geot.1980.30.4.385.
Zienkiewicz, O. C., and T. Shiomi. 1984. “Dynamic behaviour of saturated porous media: The generalized Biot formulation and its numerical solution.” Int. J. Numer. Anal. Methods Geomech. 8 (1): 71–96. https://doi.org/10.1002/nag.1610080106.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 11November 2022

History

Received: Dec 15, 2021
Accepted: Jun 24, 2022
Published online: Sep 8, 2022
Published in print: Nov 1, 2022
Discussion open until: Feb 8, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Postdoctoral Researcher, Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany; Chair of Geotechnics, Bauhaus Universität Weimar, Coudraystrasse 11c, 99423 Weimar, Germany (corresponding author). ORCID: https://orcid.org/0000-0002-1788-4880. Email: [email protected]
Jan Machaček
Postdoctoral Researcher, Institute of Geotechnics, Technische Universität Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany; Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.
Britta Bienen, Aff.M.ASCE https://orcid.org/0000-0002-0342-0698
Professor, Centre for Offshore Foundation Systems, Oceans Graduate School, Univ. of Western Australia, Crawley, 35 Stirling Hwy., Perth, WA 6009, Australia. ORCID: https://orcid.org/0000-0002-0342-0698
Torsten Wichtmann
Professor, Chair of Soil Mechanics, Foundation Engineering and Environmental Geotechnics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Semiempirical Model of Vibration-Induced Ground Deformations due to Impact Pile Driving, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11638, 149, 11, (2023).
  • Gentle Driving of Piles at a Sandy Site Combining Axial and Torsional Vibrations: Quantifying the Influence of Pile Installation Method on Lateral Behavior, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11179, 149, 11, (2023).
  • Gentle Driving of Piles (GDP) at a sandy site combining axial and torsional vibrations: Part II - cyclic/dynamic lateral loading tests, Ocean Engineering, 10.1016/j.oceaneng.2022.113452, 270, (113452), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share