Technical Papers
Jul 19, 2022

Convective Drying Analysis of Transversely Isotropic Natural Clay

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 10

Abstract

The drying phenomenon in clays is a multiphysical process accompanied by alterations in the thermal, hydraulic, and mechanical states of the multiphase system. Reversible and irreversible characteristics of shrinkage deformation have been observed experimentally in clayey soils for different ranges of moisture contents. The kinematics of drying due to evaporation and drying-induced shrinkage can be studied by utilizing a coupled thermo-hydro-mechanical (THM) model. An accurate evaluation of drying-induced shrinkage is needed to investigate the thermal cracking and damage of geomaterials. In this study, we developed a thermoporoelastoplastic constitutive framework assuming a non-associative plastic flow rule that can accurately model the transversely isotropic behavior of stiff natural clays in unsaturated conditions. All material parameters used in the non-associative transversely isotropic constitutive model were calibrated based on experimental observations of Boom clay. Then, the capability of the model was assessed by analyzing the convective drying experiment on natural Boom clay. The comparison of the numerical and experimental results confirms the plausibility of the hypotheses made in this study. The results show that the first stage of evaporation ends rapidly and the falling rate period (second stage of evaporation) is the dominant evaporation mechanism due to the intrinsic hydraulic properties of Boom clay and the high evaporative demand of the environment. The developed model reasonably captures the anisotropic elastic and plastic deformations of the clayey soil during the transient drying process. Numerical results demonstrate that drying shrinkage induces a 30% reduction in porosity in which approximately 82% of the total volumetric deformation in drying-induced shrinkage is irrecoverable (i.e., plastic). Moreover, the results indicate that most of the plastic deformation occurs in the first couple of hours of the drying process, when the soil’s unsaturated condition is in a funicular state (i.e., where capillary pressure is dominant). Finally, the last section of this paper is devoted to a sensitivity analysis of the THM behavior of Boom clay with respect to its elastic and plastic strength. The parametric study shows approximately 10% more reduction in the final surface shrinkage when the difference between the slopes of the drying-induced compression line and the swelling line (i.e., λκ) is doubled.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

The authors would like to gratefully acknowledge the financial support from the National Science Foundation under Grant No. CMMI-1804822.

References

Aliabadian, Z., G.-F. Zhao, and A. R. Russell. 2019. “Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test.” Int. J. Rock Mech. Min. Sci. 122 (Oct): 104073. https://doi.org/10.1016/j.ijrmms.2019.104073.
Alonso, E., E. Romero, C. Hoffmann, and E. J. E. g. García-Escudero. 2005. “Expansive bentonite–sand mixtures in cyclic controlled-suction drying and wetting.” Eng. Geol. 81 (3): 213–226.
Amorosi, A., F. Rollo, and Y. F. Dafalias. 2021. “Relating elastic and plastic fabric anisotropy of clays.” Géotechnique 71 (7): 1–11. https://doi.org/10.1680/jgeot.19.P.134.
Baldi, G., T. Hueckel, A. Peano, and R. Pellegrini. 1991. Developments in modelling of thermo-hydro-geomechanical behaviour of Boom clay and clay-based buffer materials. EUR 13365/1. Brussels, Belgium: European Commission.
Bernier, F., X. L. Li, and W. Bastiaens. 2007. “Twenty-five years’ geotechnical observation and testing in the Tertiary Boom Clay formation.” Géotechnique 57 (2): 229–237. https://doi.org/10.1680/geot.2007.57.2.229.
Bishop, A. W. 1959. “The principle of effective stress.” Tek. Ukebl. 39 (9): 859–863.
Bittelli, M., G. S. Campbell, and F. Tomei. 2015. Soil physics with Python: Transport in the soil-plant-atmosphere system. Oxford, UK: Oxford University Press.
Bittelli, M., F. Ventura, G. S. Campbell, R. L. Snyder, F. Gallegati, and P. R. Pisa. 2008. “Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils.” J. Hydrol. 362 (3–4): 191–205. https://doi.org/10.1016/j.jhydrol.2008.08.014.
Blatz, J. A., Y.-J. Cui, and L. Oldecop. 2008. “Vapour equilibrium and osmotic technique for suction control.” Geotech. Geol. Eng. 26: 661–673.
Braun, P., S. Ghabezloo, P. Delage, J. Sulem, and N. Conil. 2021. “Transversely isotropic poroelastic behaviour of the Callovo-Oxfordian claystone: A set of stress-dependent parameters.” Rock Mech. Rock Eng. 54: 377–396.
Brutsaert, W. 2005. Hydrology: An introduction. Cambridge, UK: Cambridge University Press.
Brutsaert, W. 2015. “A generalized complementary principle with physical constraints for land-surface evaporation.” Water Resour. Res. 51 (10): 8087–8093. https://doi.org/10.1002/2015WR017720.
Bryant, E. C., and W. Sun. 2019. “A micromorphically regularized Cam-clay model for capturing size-dependent anisotropy of geomaterials.” Comput. Methods Appl. Mech. Eng. 354 (Sep): 56–95. https://doi.org/10.1016/j.cma.2019.05.003.
Chapuis, R. P., and M. Aubertin. 2003. “On the use of the Kozeny Carman equation to predict the hydraulic conductivity of soils.” Can. Geotech. J. 40 (3): 616–628.
Chaves, E. W. 2013. Notes on continuum mechanics. Berlin: Springer.
Chen, Y., F. Marinelli, and G. Buscarnera. 2020. “Influence of clay anisotropy on model simulations of wetting collapse.” J. Eng. Mech. 146 (2): 04019130. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001703.
Cherati, D. Y., and O. Ghasemi-Fare. 2019. “Analyzing transient heat and moisture transport surrounding a heat source in unsaturated porous media using the Green’s function.” Geothermics 81 (Sep): 224–234. https://doi.org/10.1016/j.geothermics.2019.04.012.
Cherati, D. Y., and O. Ghasemi-Fare. 2021. “Unsaturated thermal consolidation around a heat source.” Comput. Geotech. 134 (Jun): 104091. https://doi.org/10.1016/j.compgeo.2021.104091.
Choudhury, B., R. Reginato, and S. Idso. 1986. “An analysis of infrared temperature observations over wheat and calculation of latent heat flux.” Agric. For. Meteorol. 37 (1): 75–88. https://doi.org/10.1016/0168-1923(86)90029-8.
Coccia, C. J. R., and J. S. McCartney. 2016. “Thermal volume change of poorly draining soils I: Critical assessment of volume change mechanisms.” Comput. Geotech. 80 (Dec): 26–40. https://doi.org/10.1016/j.compgeo.2016.06.009.
COMSOL. 2018. COMSOL Multiphysics v.5.3a. Stockholm, Sweden: COMSOL.
Coussy, O. 2004. Poromechanics. New York: Wiley.
Cui, Y. J., C. Loiseau, and P. Delage. 2002. “Microstructure changes of a confined swelling soil due to suction controlled hydration.” In Proc., 3rd Int. Conf. on Unsaturated Soils, UNSAT 2002, 593–598. Berlin: Springer.
Dafalias, Y. F., M. T. Manzari, and A. G. Papadimitriou. 2006. “SANICLAY: Simple anisotropic clay plasticity model.” Int. J. Numer. Anal. Methods Geomech. 30 (12): 1231–1257. https://doi.org/10.1002/nag.524.
Delage, P., N. Sultan, and Y. J. Cui. 2000. “On the thermal consolidation of Boom clay.” Can. Geotech. J. 37 (2): 343–354. https://doi.org/10.1139/t99-105.
Della Vecchia, G., C. Jommi, A. Lima, and E. Romero. 2010. “Some remarks on the hydro-mechanical modelling of natural and compacted Boom Clay.” In Unsaturated soils, 1st ed., 803–809. Boca Raton, FL: CRC Press.
Della Vecchia, G., and E. Romero. 2013. “A fully coupled elastic–plastic hydromechanical model for compacted soils accounting for clay activity.” Int. J. Numer. Anal. Methods Geomech. 37 (5): 503–535. https://doi.org/10.1002/nag.1116.
Dong, Y., N. Lu, and P. J. Fox. 2020. “Drying-induced consolidation in soil.” J. Geotech. Geoenviron. Eng. 146 (9): 04020092. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002327.
François, B., V. Labiouse, A. Dizier, F. Marinelli, R. Charlier, and F. Collin. 2014. “Hollow cylinder tests on Boom Clay: Modelling of strain localization in the anisotropic excavation damaged zone.” Rock Mech. Rock Eng. 47 (1): 71–86. https://doi.org/10.1007/s00603-012-0348-5.
François, B., and L. Laloui. 2008. “ACMEG-TS: A constitutive model for unsaturated soils under non-isothermal conditions.” Int. J. Numer. Anal. Methods Geomech. 32 (16): 1955–1988. https://doi.org/10.1002/nag.712.
François, B., L. Laloui, and C. Laurent. 2009. “Thermo-hydro-mechanical simulation of ATLAS in situ large scale test in Boom Clay.” Comput. Geotech. 36 (4): 626–640. https://doi.org/10.1016/j.compgeo.2008.09.004.
Gallipoli, D., A. Gens, R. Sharma, and J. Vaunat. 2003. “An elasto-plastic model for unsaturated soil incorporating the effects of suction and degree of saturation on mechanical behavior.” Géotechnique 53 (1): 123–135. https://doi.org/10.1680/geot.2003.53.1.123.
Gao, J., J. Deng, K. Lan, Y. Feng, W. Zhang, and H. Wang. 2017. “Porothermoelastic effect on wellbore stability in transversely isotropic medium subjected to local thermal non-equilibrium.” Int. J. Rock Mech. Min. Sci. 96 (4): 66–84. https://doi.org/10.1016/j.ijrmms.2016.12.007.
Gens, A., and E. E. Alonso. 1992. “A framework for the behaviour of unsaturated expansive clays.” Can. Geotech. J. 20 (6). https://doi.org/10.1139/t92-120.
Gerard, P., A. Léonard, J.-P. Masekanya, R. Charlier, and F. Collin. 2010. “Study of the soil–atmosphere moisture exchanges through convective drying tests in non-isothermal conditions.” Int. J. Numer. Anal. Methods Geomech. 34 (12): 1297–1320. https://doi.org/10.1002/nag.866.
Ghasemi-Fare, O., and P. Basu. 2019. “Coupling heat and buoyant fluid flow for thermal performance assessment of geothermal piles.” Comput. Geotech. 116 (3): 103211. https://doi.org/10.1016/j.compgeo.2019.103211.
Ghorbani, A., M. Zamora, and P. Cosenza. 2009. “Effects of desiccation on the elastic wave velocities of clay-rocks.” Int. J. Rock Mech. Min. Sci. 46 (8): 1267–1272. https://doi.org/10.1016/j.ijrmms.2009.01.009.
Graham, J., and G. Houlsby. 1983. “Anisotropic elasticity of a natural clay.” Géotechnique 33 (2): 165–180. https://doi.org/10.1680/geot.1983.33.2.165.
Grant, S. A., and A. Salehzadeh. 1996. “Calculation of temperature effects on wetting coefficients of porous solids and their capillary pressure functions.” Water Resour. Res. 32 (2): 261–270. https://doi.org/10.1029/95WR02915.
Grzegorz, M., and B. Jacek. 2007. “Non-linear heat and mass transfer during convective drying of kaolin cylinder under non-steady conditions.” Transp. Porous Media 66 (1): 121–134. https://doi.org/10.1007/s11242-006-9009-z.
Guayacan-Carrillo, L.-M., S. Ghabezloo, J. Sulem, D. M. Seyedi, and G. Armand. 2017. “Effect of anisotropy and hydro-mechanical couplings on pore pressure evolution during tunnel excavation in low-permeability ground.” Int. J. Rock Mech. Min. Sci. 97 (Sep): 1–14.
Hedan, S., P. Cosenza, V. Valle, P. Dudoignon, A.-L. Fauchille, and J. Cabrera. 2012. “Investigation of the damage induced by desiccation and heating of Tournemire argillite using digital image correlation.” Int. J. Rock Mech. Min. Sci. 51 (Apr): 64–75. https://doi.org/10.1016/j.ijrmms.2012.01.001.
Horseman, S., M. Winter, and D. Enwistle. 1987. Geotechnical characterization of Boom Clay in relation to the disposal of radioactive waste. Brussels, Belgium: European Commission.
Hubert, J., E. Plougonven, N. Prime, A. Léonard, and F. Collin. 2018. “Comprehensive study of the drying behavior of Boom clay: Experimental investigation and numerical modeling.” Int. J. Numer. Anal. Methods Geomech. 42 (2): 211–230.
Jaradat, K. A., and S. L. Abdelaziz. 2020. “Thermomechanical triaxial cell for rate-controlled heating-cooling cycles.” Geotech. Test. J. 43 (4): 1022–1036. https://doi.org/10.1520/GTJ20180354.
Jommi, C. 2000. “Remarks on the constitutive modelling of unsaturated soils.” In Experimental evidence and theoretical approaches in unsaturated soils, 139–153. London: CRC Press.
Joshaghani, M., and O. Ghasemi-Fare. 2019. “A Study on thermal consolidation of fine grained soils using modified consolidometer.” In Proc., 8th Int. Conf. on Case Histories in Geotechnical Engineering, 148–156. Reston, VA: ASCE.
Lai, S.-H., J. M. Tiedje, and A. E. Erickson. 1976. “In situ measurement of gas diffusion coefficient in soils.” Soil Sci. Soc. Am. J. 40 (1): 3–6.
Laloui, L., and C. Cekerevac. 2003. “Thermo-plasticity of clays: An isotropic yield mechanism.” Comput. Geotech. 30 (8): 649–660. https://doi.org/10.1016/j.compgeo.2003.09.001.
Le, T., P. Delage, Y. Cui, A. Tang, A. Lima, E. Romero, A. Gens, and X. Li. 2008. “Water retention properties of Boom clay: A comparison between different experimental techniques.” In Proc., Unsaturated soils: Advances in geo-Engineering, edited by Toll et al., 229–234. London: Taylor & Francis.
Lehmann, P., S. Assouline, and D. Or. 2008. “Characteristic lengths affecting evaporative drying of porous media.” Phys. Rev. E 77 (5): 056309. https://doi.org/10.1103/PhysRevE.77.056309.
Le Pense, S., C. Arson, and A. Pouya. 2016. “A fully coupled damage-plasticity model for unsaturated geomaterials accounting for the ductile–brittle transition in drying clayey soils.” Int. J. Solids Struct. 91 (Aug): 102–114.
Li, C., H. Xie, and J. Wang. 2020. “Anisotropic characteristics of crack initiation and crack damage thresholds for shale.” Int. J. Rock Mech. Min. Sci. 126 (Feb): 104178. https://doi.org/10.1016/j.ijrmms.2019.104178.
Lima, A. F. A. 2011. Thermo-hydro-mechanical behaviour of two deep Belgium clay formations: Boom and ypresian clays. Barcelona, Spain: Universitat Politècnica de Catalunya.
Lings, M. L., D. S. Pennington, and D. F. T. Nash. 2000. “Anisotropic stiffness parameters and their measurement in a stiff natural clay.” Géotechnique 50 (2): 109–125. https://doi.org/10.1680/geot.2000.50.2.109.
Modaressi, H., and L. Laloui. 1997. “A thermo-viscoplastic constitutive model for clays.” Int. J. Numer. Anal. Methods Geomech. 21 (5): 313–335. https://doi.org/10.1002/(SICI)1096-9853(199705)21:5%3C313::AID-NAG872%3E3.0.CO;2-5.
Mohajerani, M., P. Delage, J. Sulem, M. Monfared, A. M. Tang, and B. Gatmiri. 2012. “A laboratory investigation of thermally induced pore pressures in the Callovo-Oxfordian claystone.” Int. J. Rock Mech. Min. Sci. 52 (Feb): 112–121. https://doi.org/10.1016/j.ijrmms.2012.02.012.
Monteith, J., and M. Unsworth. 2013. Principles of environmental physics: Plants, animals, and the atmosphere. Cambridge, MA: Academic Press.
Mualem, Y. 1978. “Hydraulic conductivity of unsaturated porous media: Generalized macroscopic approach.” Water Resour. Res. 14 (2): 325–334. https://doi.org/10.1029/WR014i002p00325.
Musielak, G., and D. Mierzwa. 2009. “Permanent strains in clay-like material during drying.” Drying Technol. 27 (7–8): 894–902. https://doi.org/10.1080/07373930903041616.
Ng, C. W. W., and A. K. Leung. 2012. “Measurements of drying and wetting permeability functions using a new stress-controllable soil column.” J. Geotech. Geoenviron. Eng. 138 (1): 58–68. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000560.
Niessner, J., and S. M. Hassanizadeh. 2009. “Modeling kinetic interphase mass transfer for two-phase flow in porous media including fluid–fluid interfacial area.” Transp. Porous Media 80 (2): 329. https://doi.org/10.1007/s11242-009-9358-5.
Nova, R. 1980. “The failure of transversely isotropic rocks in triaxial compression.” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 17 (6): 325–332. https://doi.org/10.1016/0148-9062(80)90515-X.
Novak, M. D. 2010. “Dynamics of the near-surface evaporation zone and corresponding effects on the surface energy balance of a drying bare soil.” Agric. For. Meteorol. 150 (10): 1358–1365. https://doi.org/10.1016/j.agrformet.2010.06.005.
Nuth, M., and L. Laloui. 2008. “Advances in modelling hysteretic water retention curve in deformable soils.” Comput. Geotech. 35 (6): 835–844. https://doi.org/10.1016/j.compgeo.2008.08.001.
Or, D., P. Lehmann, E. Shahraeeni, and N. J. V. Shokri. 2013. “Advances in soil evaporation physics—A review.” Vadose Zone J. 12 (4): 1–16. https://doi.org/10.2136/vzj2012.0163.
Peron, H., L. Laloui, L.-B. Hu, and T. Hueckel. 2013. “Formation of drying crack patterns in soils: A deterministic approach.” Acta Geotech. 8 (2): 215–221. https://doi.org/10.1007/s11440-012-0184-5.
Peron, H., L. Laloui, T. Hueckel, and L. B. Hu. 2009. “Desiccation cracking of soils.” Eur. J. Environ. Civ. Eng. 13 (7–8): 869–888. https://doi.org/10.1080/19648189.2009.9693159.
Philip, J., and D. De Vries. 1957. “Moisture movement in porous materials under temperature gradients.” EOS Trans. Am. Geophys. Union 38 (2): 222–232. https://doi.org/10.1029/TR038i002p00222.
Prime, N., S. Levasseur, L. Miny, R. Charlier, A. Léonard, and F. J. C. Collin. 2015. “Drying-induced shrinkage of Boom clay: An experimental investigation.” Can. Geotech. J. 53 (3): 396–409.
Romero, E., G. Della Vecchia, and C. Jommi. 2011. “An insight into the water retention properties of compacted clayey soils.” Géotechnique 61 (4): 313–328. https://doi.org/10.1680/geot.2011.61.4.313.
Romero, E., A. Gens, and A. Lloret. 1999. “Water permeability, water retention and microstructure of unsaturated compacted Boom clay.” Eng. Geol. 54 (1–2): 117–127. https://doi.org/10.1016/S0013-7952(99)00067-8.
Romero, E., and C. Jommi. 2008. “An insight into the role of hydraulic history on the volume changes of anisotropic clayey soils.” Water Resour. Res. 44 (5): W12412. https://doi.org/10.1029/2007WR006558.
Rutqvist, J., L. Börgesson, M. Chijimatsu, A. Kobayashi, L. Jing, T. S. Nguyen, J. Noorishad, and C. F. Tsang. 2001. “Thermohydromechanics of partially saturated geological media: Governing equations and formulation of four finite element models.” Int. J. Rock Mech. Min. Sci. 38 (1): 105–127. https://doi.org/10.1016/S1365-1609(00)00068-X.
Saito, H., J. Šimůnek, and B. P. Mohanty. 2006. “Numerical analysis of coupled water, vapor, and heat transport in the Vadose zone.” Vadose Zone J. 5 (2): 784–800. https://doi.org/10.2136/vzj2006.0007.
Sánchez, M., A. Gens, L. do Nascimento Guimarães, and S. Olivella. 2005. “A double structure generalized plasticity model for expansive materials.” Int. J. Numer. Anal. Methods Geomech. 29 (8): 751–787. https://doi.org/10.1002/nag.434.
Sánchez, M., A. Gens, and S. Olivella. 2012. “THM analysis of a large-scale heating test incorporating material fabric changes.” Int. J. Numer. Anal. Methods Geomech. 36 (4): 391–421. https://doi.org/10.1002/nag.1011.
Sánchez, M., A. Gens, M. V. Villar, and S. Olivella. 2016. “Fully coupled thermo-hydro-mechanical double-porosity formulation for unsaturated soils.” Int. J. Geomech. 16 (6): D4016015. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000728.
Sánchez, M., O. L. Manzoli, and L. J. Guimarães. 2014. “Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique.” Comput. Geotech. 62 (Oct): 27–39. https://doi.org/10.1016/j.compgeo.2014.06.009.
Semnani, S. J., J. A. White, and R. I. Borja. 2016. “Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity.” Int. J. Numer. Anal. Methods Geomech. 40 (18): 2423–2449. https://doi.org/10.1002/nag.2536.
Shahraeeni, E., P. Lehmann, and D. Or. 2012. “Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: Characteristics of evaporation from discrete pores.” Water Resour. Res. 48 (9): 12. https://doi.org/10.1029/2012WR011857.
Shokri, N., P. Lehmann, and D. Or. 2009. “Critical evaluation of enhancement factors for vapor transport through unsaturated porous media.” Water Resour. Res. 45 (10): W10433. https://doi.org/10.1029/2009WR007769.
Sitarenios, P., and M. Kavvadas. 2020. “A plasticity constitutive model for unsaturated, anisotropic, nonexpansive soils.” Int. J. Numer. Anal. Methods Geomech. 44 (4): 435–454. https://doi.org/10.1002/nag.3028.
Smits, K. M., A. Cihan, T. Sakaki, and T. H. Illangasekare. 2011. “Evaporation from soils under thermal boundary conditions: Experimental and modeling investigation to compare equilibrium-and nonequilibrium-based approaches.” Water Resour. Res. 47 (5): W05540. https://doi.org/10.1029/2010WR009533.
Spencer, A. J. M. 1984. Continuum theory of the mechanics of fibre-reinforced composites. Berlin: Springer.
Sultan, N., Y.-J. Cui, and P. Delage. 2010. “Yielding and plastic behaviour of Boom clay.” Géotechnique 60 (9): 657–666. https://doi.org/10.1680/geot.7.00142.
Sviercoski, R., Y. Efendiev, and B. Mohanty. 2018. “Upscaling the coupled water and heat transport in the shallow subsurface.” Water Resour. Res. 54 (2): 995–1012. https://doi.org/10.1002/2017WR021490.
Tamizdoust, M. M., and O. Ghasemi-Fare. 2020a. “Comparison of thermo-poroelastic and thermo-poroelastoplastic constitutive models to analyze THM process in clays.” In Proc., 2nd Int. Conf. on Energy Geotechnics and E3S Web of Conf., 04008. Les Ulis, France: EDP Sciences.
Tamizdoust, M. M., and O. Ghasemi-Fare. 2020b. “A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media.” Comput. Geotech. 117 (Jan): 103250. https://doi.org/10.1016/j.compgeo.2019.103250.
Tamizdoust, M. M., and O. Ghasemi-Fare. 2020c. “Utilization of nonequilibrium phase change approach to analyze the nonisothermal multiphase flow in shallow subsurface soils.” Water Resour. Res. 56 (10): e2020WR027381. https://doi.org/10.1029/2020WR027381.
Tamizdoust, M. M., and O. Ghasemi-Fare. 2022. “Long-term thermo-hydraulic response of the shallow subsurface soil in the vicinity of a buried horizontal heat source.” Int. J. Heat Mass Transfer 183 (Feb): 122120.
Tamizdoust, M. M., A. Moradi, and O. Ghasemi-Fare. 2020. “Numerical analysis of variation of saturation and moisture transport at the vicinity of a heat source.” In Proc., Geo-Congress 2020: Geo-Systems, Sustainability, Geoenvironmental Engineering, and Unsaturated Soil Mechanics, 349–357. Reston, VA: ASCE.
Tang, A.-M., and Y.-J. Cui. 2005. “Controlling suction by the vapour equilibrium technique at different temperatures and its application in determining the water retention properties of MX80 clay.” Can. Geotech. J. 42 (1): 287–296. https://doi.org/10.1139/t04-082.
Tarantino, A. 2009. “A water retention model for deformable soils.” Géotechnique 59 (9): 751–762. https://doi.org/10.1680/geot.7.00118.
Terzaghi, K. 1925. “Principles of soil mechanics I—Phenomena of cohesion of clays.” Eng. News-Rec. 95 (19): 742–746.
Trautz, A. C., K. M. Smits, and A. Cihan. 2015. “Continuum-scale investigation of evaporation from bare soil under different boundary and initial conditions: An evaluation of nonequilibrium phase change.” Water Resour. Res. 51 (9): 7630–7648. https://doi.org/10.1002/2014WR016504.
Tsang, C. F., J. D. Barnichon, J. Birkholzer, X. L. Li, H. H. Liu, and X. Sillen. 2012. “Coupled thermo-hydro-mechanical processes in the near field of a high-level radioactive waste repository in clay formations.” Int. J. Rock Mech. Min. Sci. 49 (Jan): 31–44. https://doi.org/10.1016/j.ijrmms.2011.09.015.
Vahedifard, F., T. D. Cao, S. K. Thota, and E. Ghazanfari. 2018. “Nonisothermal models for soil–water retention curve.” J. Geotech. Geoenviron. Eng. 144 (9): 04018061. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001939.
Vanderborght, J., T. Fetzer, K. Mosthaf, K. M. Smits, and R. Helmig. 2017. “Heat and water transport in soils and across the soil-atmosphere interface: 1. Theory and different model concepts.” Water Resour. Res. 53 (2): 1057–1079. https://doi.org/10.1002/2016WR019982.
van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Vecchia, G. D., and E. Romero. 2013. “A fully coupled elastic–plastic hydromechanical model for compacted soils accounting for clay activity.” Int. J. Numer. Anal. Methods Geomech. 37 (5): 503–535. https://doi.org/10.1002/nag.1116.
Veiskarami, M., and M. M. Tamizdoust. 2017. “Bifurcation analysis in sands under true triaxial conditions with coaxial and noncoaxial plastic flow rules.” J. Eng. Mech. 143 (10): 04017120. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001344.
Venda Oliveira, P. J., and L. J. Lemos. 2014. “Experimental study of isotropic and anisotropic constitutive models.” J. Geotech. Geoenviron. Eng. 140 (8): 06014008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001141.
Vesga, L. 2008. “Equivalent effective stress and compressibility of unsaturated kaolinite clay subjected to drying.” J. Geotech. Geoenviron. Eng. 134 (3): 366–378. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:3(366).
Villar, M. V., P. L. Martín, F. J. Romero, R. J. Iglesias, and V. Gutiérrez-Rodrigo. 2016. “Saturation of barrier materials under thermal gradient.” Geomech. Energy Environ. 8 (Dec): 38–51. https://doi.org/10.1016/j.gete.2016.05.004.
Viola, R., M. Tuller, D. Or, and J. Drasdis. 2005. “Microstructure of clay-sand mixtures at different hydration states.” In Proc., Int. Symp. on Advanced Experimental Unsaturated Soil Mechanics, 437–442. London: Taylor, Francis Group.
Volckaert, G., L. D. C. Ortiz, M. Put, S. T. Horseman, J. F. Harrington, V. Fioravante, and M. D. Impey. 1995. MEGAS: Modelling and experiments on gas migration in repository host rocks. Final Rep.—Phase 1, CEC Nuclear Science and Technology Series, European commision Rep., EUR 16235-EN. Brussels, Belgium: European Commission.
Wang, C., and P. J. Fox. 2020. “Numerical model for heat transfer in saturated layered soil with effective porosity.” J. Geotech. Geoenviron. Eng. 146 (12): 04020135. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002390.
Wheeler, S., R. Sharma, and M. Buisson. 2003. “Coupling of hydraulic hysteresis and stress–strain behaviour in unsaturated soils.” Géotechnique 53 (1): 41–54. https://doi.org/10.1680/geot.2003.53.1.41.
Wilson, G., D. Fredlund, and S. Barbour. 1997. “The effect of soil suction on evaporative fluxes from soil surfaces.” Can. Geotech. J. 34 (1): 145–155. https://doi.org/10.1139/t96-078.
Wilson, G. W., D. Fredlund, and S. Barbour. 1994. “Coupled soil-atmosphere modelling for soil evaporation.” Can. Geotech. J. 31 (2): 151–161. https://doi.org/10.1139/t94-021.
Yang, D. S., M. Bornert, S. Chanchole, H. Gharbi, P. Valli, and B. Gatmiri. 2012. “Dependence of elastic properties of argillaceous rocks on moisture content investigated with optical full-field strain measurement techniques.” Int. J. Rock Mech. Min. Sci. 53 (Jul): 45–55. https://doi.org/10.1016/j.ijrmms.2012.04.004.
Yu, H., W. Chen, Z. Gong, Y. Ma, G. Chen, and X. Li. 2018. “Influence of temperature on the hydro-mechanical behavior of Boom Clay.” Int. J. Rock Mech. Min. Sci. 108 (Apr): 189–197. https://doi.org/10.1016/j.ijrmms.2018.04.023.
Zamanian, S. 2016. Probabilistic performance assessment of deteriorating buried concrete sewer pipes. Columbus, OH: Ohio State Univ.
Zamanian, S., J. Hur, and A. Shafieezadeh. 2020. “A high-fidelity computational investigation of buried concrete sewer pipes exposed to truckloads and corrosion deterioration.” Eng. Struct. 221 (Oct): 111043. https://doi.org/10.1016/j.engstruct.2020.111043.
Zhang, Z. F. 2011. “Soil water retention and relative permeability for conditions from oven-dry to full saturation.” Vadose Zone J. 10 (4): 1299–1308. https://doi.org/10.2136/vzj2011.0019.
Zhao, Y., and R. I. Borja. 2020. “A continuum framework for coupled solid deformation–fluid flow through anisotropic elastoplastic porous media.” Comput. Methods Appl. Mech. Eng. 369 (Sep): 113225. https://doi.org/10.1016/j.cma.2020.113225.
Zhao, Y., S. J. Semnani, Q. Yin, and R. I. Borja. 2018. “On the strength of transversely isotropic rocks.” Int. J. Numer. Anal. Methods Geomech. 42 (16): 1917–1934. https://doi.org/10.1002/nag.2809.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 10October 2022

History

Received: Oct 20, 2020
Accepted: May 12, 2022
Published online: Jul 19, 2022
Published in print: Oct 1, 2022
Discussion open until: Dec 19, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Mohammadreza Mir Tamizdoust, Ph.D., A.M.ASCE [email protected]
Geotechnical Engineer, Dept. of Forensic Engineering, Bryant Consultants Operating LLC, 3360 Wiley Post Rd. #100, Carrollton, TX 75006. Email: [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Univ. of Louisville, 132 Eastern Pkwy., Louisville, KY 40292 (corresponding author). ORCID: https://orcid.org/0000-0002-6804-2560. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Thermo-Hydro-Mechanical Analysis of Soil-Pile Interaction in Expansive Unsaturated Clays during Natural Evaporation and Infiltration, Geo-Congress 2024, 10.1061/9780784485354.032, (328-337), (2024).
  • Prediction of the Non-Isothermal Shrinkage of Natural Clay through a Fully Coupled Thermo-Hydro-Mechanical Model, Geo-Congress 2023, 10.1061/9780784484708.063, (663-671), (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share