Open access
Technical Papers
Feb 28, 2022

Rate- and Time-Dependent Mechanical Behavior of Foam-Grouted Coarse-Grained Soils

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 148, Issue 5

Abstract

This paper experimentally investigates the mechanical properties of foam-injected gravel by means of uniaxial compression tests and uniaxial creep tests. Bonding of noncohesive soils by foam injection is a novel soil improvement method that can be applied for the stabilization of cohesionless soils at the tunnel face and behind soldier pile walls. Limited data on the mechanical behavior of foam-injected soils is available in the literature. A method for the preparation of homogeneous and reproducible test specimens was developed. The testing program included the variation of the factors that influence the mechanical behavior (e.g., initial soil density, grain size, strain rate, curing time, and stress level). Similar to cemented soils, the foam-injected soils show an elastoplastic stress–strain response and softening beyond the peak. The mechanical behavior is time-, stress- and rate dependent. The strength and stiffness can be described by the porosity–binder concept considering the influence of strain rate, soil density, and foam content.

Formats available

You can view the full content in the following formats:

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors wish to express their gratitude to Federal Ministry for Economic Affairs and Energy and TPH Bausysteme GmbH for their financial support of this research.

References

Andersen, G. R., C. W. Swan, C. C. Ladd, and J. T. Germaine. 1995. “Small-strain behavior of frozen sand in triaxial compression.” Can. Geotech. J. 32 (3): 428–451. https://doi.org/10.1139/t95-047.
Andrews, E. W., L. J. Gibson, and M. F. Ashby. 1999a. “The creep of cellular solids.” Acta Mater. 47 (10): 2853–2863. https://doi.org/10.1016/S1359-6454(99)00150-0.
Andrews, E. W., J.-S. Huang, and L. J. Gibson. 1999b. “Creep behavior of a closed-cell aluminum foam.” Acta Mater. 47 (10): 2927–2935. https://doi.org/10.1016/S1359-6454(99)00161-5.
Arenson, L. U., M. M. Johansen, and S. M. Springman. 2004. “Effects of volumetric ice content and strain rate on shear strength under triaxial conditions for frozen soil samples.” Permafrost Periglacial Processes 15 (3): 261–271. https://doi.org/10.1002/ppp.498.
Ashby, M. F. 1983. “The mechanical properties of cellular solids.” Metall. Trans. A 14 (9): 1755–1769. https://doi.org/10.1007/BF02645546.
Ashby, M. F. 2006. “The properties of foams and lattices.” Philos. Trans. R. Soc. London, Ser. A: Math. Phys. Eng. Sci. 364 (1838): 15–30. https://doi.org/10.1098/rsta.2005.1678.
Bischoff, P. H., and S. H. Perry. 1991. “Compressive behaviour of concrete at high strain rates.” Mater. Struct. 24 (6): 425–450. https://doi.org/10.1007/BF02472016.
Bodi, J., Z. Bodi, J. Scucka, and P. Martinec. 2012. “Polyurethane grouting technologies.” In Polyurethane, edited by F. Zafar, 307–336. London: InTech.
Bruce, D. A., C. S. El Mohtar, M. J. Byle, P. Gazzarrini, L. F. Johnsen, and D. R. Thomas. 2017. Grouting 2017: Case histories. Geotechnical special publications v.287. Reston, VA: ASCE.
Budach, C., and M. Thewes. 2015. “Application ranges of EPB shields in coarse ground based on laboratory research.” Tunnelling Underground Space Technol. 50 (2011): 296–304. https://doi.org/10.1016/j.tust.2015.08.006.
Burteau, A., J.-D. Bartout, Y. Bienvenu, and S. Forest. 2014. “On the creep deformation of nickel foams under compression.” C.R. Phys. 15 (8–9): 705–718. https://doi.org/10.1016/j.crhy.2014.09.004.
Cambefort, H. 1969. Bodeninjektionstechnik: Einpressungen in Untergrund Und Bauwerke. Wiesbaden und Berlin: Bauverlag GmbH.
Christopher, B., D. Atmatzidis, and R. Krizek. 1989. “Laboratory testing of chemically grouted sand.” Geotech. Test. J. 12 (2): 109. https://doi.org/10.1520/GTJ10685J.
Clough, G. W., W. M. Kück, and G. Kasali. 1979. “Silicate-stabilized sands.” J. Geotech. Eng. Div. 105 (1): 65–82. https://doi.org/10.1061/AJGEB6.0000760.
Consoli, N. C., R. C. Cruz, M. F. Floss, and L. Festugato. 2010. “Parameters controlling tensile and compressive strength of artificially cemented sand.” J. Geotech. Geoenviron. Eng. 136 (5): 759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278.
Consoli, N. C., A. P. da Silva, H. P. Nierwinski, and J. Sosnoski. 2018. “Durability, strength, and stiffness of compacted gold tailings–cement mixes.” Can. Geotech. J. 55 (4): 486–494. https://doi.org/10.1139/cgj-2016-0391.
Consoli, N. C., D. Foppa, L. Festugato, and K. S. Heineck. 2007. “Key parameters for strength control of artificially cemented soils.” J. Geotech. Geoenviron. Eng. 133 (2): 197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:2(197).
Consoli, N. C., L. D. S. Lopes Jr, P. D. M. Prietto, L. Festugato, and R. C. Cruz. 2011. “Variables controlling stiffness and strength of lime-stabilized soils.” J. Geotech. Geoenviron. Eng. 137 (6): 628–632. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000470.
Consoli, N. C., S. F. V. Marques, M. F. Floss, and L. Festugato. 2017a. “Broad-spectrum empirical correlation determining tensile and compressive strength of cement-bonded clean granular soils.” J. Mater. Civ. Eng. 29 (6): 06017004. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001858.
Consoli, N. C., R. A. Quiñónez, L. E. González, and R. A. López. 2017b. “Influence of molding moisture content and porosity/cement index on stiffness, strength, and failure envelopes of artificially cemented fine-grained soils.” J. Mater. Civ. Eng. 29 (5): 04016277. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001819.
Consoli, N. C., R. A. Q. Samaniego, S. F. V. Marques, G. I. Venson, E. Pasche, and L. E. G. Velásquez. 2016. “Single model establishing strength of dispersive clay treated with distinct binders.” Can. Geotech. J. 53 (12): 2072–2079. https://doi.org/10.1139/cgj-2015-0606.
Couteau, O., and D. C. Dunand. 2008. “Creep of aluminum syntactic foams.” Mater. Sci. Eng., A 488 (1–2): 573–579. https://doi.org/10.1016/j.msea.2008.01.022.
Cusatis, G. 2011. “Strain-rate effects on concrete behavior.” Int. J. Impact Eng. 38 (4): 162–170. https://doi.org/10.1016/j.ijimpeng.2010.10.030.
DIN (Deutsches Institut für Normung e.V.). 2018. Geotechnische Erkundung und Untersuchung—Laborversuche an Bodenproben—Teil 7: Einaxialer Druckversuch. DIN EN ISO 17892-7. Berlin: Beuth Verlag GmbH.
Diologent, F., Y. Conde, R. Goodall, and A. Mortensen. 2009. “Microstructure, strength and creep of aluminium-nickel open cell foam.” Philos. Mag. 89 (13): 1121–1139. https://doi.org/10.1080/14786430902915396.
Eyring, H. 1936. “Viscosity, plasticity, and diffusion as examples of absolute reaction rates.” J. Chem. Phys. 4 (4): 283–291. https://doi.org/10.1063/1.1749836.
Fillibeck, J., N. Vogt, and M. Zaunseder. 2006. “Bau Der U-Bahn-Linie U3 Nord, Los 1 in München - Oberflächensetzungen Beim Spritzbetonvortrieb Mit Schirmgewölbesicherungen.” Bauingenieur 81: 359–366.
Garshol, K. F. 2002. “Vorinjektion im Tunnelbau—Eine vernünftige Maßnahme.” In Beiträge Zum 17. Christian Vedder Kolloquium: Injektionen in Boden Und Fels, edited by G. Riedmüller, W. Schubert, and S. Semperich. Graz, Austria: Technische Universität Graz, Gruppe Geotechnik Graz, Institut für Bodenmechanik und Grundbau.
Gartung, E. 1976. Grundsatzversuche Mit Silikatgelinjektion im Nürnberger sand. Nürnberg, Germany: Eigenverlag LGA. Veröffentlichungen des Grundbauinstituts der Landesgewerbeanstalt Bayern.
Gibson, L. J., and M. F. Ashby. 2014. Cellular solids. Cambridge, UK: Cambridge University Press.
Henzinger, C., and P. Schömig. 2020. “Prognose der Festigkeitsentwicklung Zementbehandelter Böden Mit Dem Porosity/Binder-Index.” geotechnik 43 (1): 14–25. https://doi.org/10.1002/gete.201900017.
Holter, K.-G., and H.-O. Hognestad. 2012. “Modern pre-injection in underground construction with rapid-setting microcements and colloidal silica—Applications in conventional and TBM-tunnelling.” Geomechanik Tunnelbau 5 (1): 49–56. https://doi.org/10.1002/geot.201200001.
Hornich, W., and G. Stadler. 2011. InjektionenGrundbau-Taschenbuch: Teil 2: Geotechnische Verfahren, edited by K. J. Witt, 159. Berlin: Ernst.
Huang, J. S., and L. J. Gibson. 1991. “Creep of polymer foams.” J. Mater. Sci. 26 (3): 637–647. https://doi.org/10.1007/BF00588298.
Hutchinson, B. G. 1963. “Granulometric properties of cement stabilized sands.” J. Soil Mech. Found. Div. 89 (3): 95–102. https://doi.org/10.1061/JSFEAQ.0000522.
Kainrath, A. 2017. “Injektionen Im Lockergestein.” Ph.D. dissertation, Institut für Geotechnik, Technische Universität Wien.
Karol, R. H. 2003. Chemical grouting and soil stabilization. Hoboken, NJ: Marcel Dekker Inc.
Koenzen, P. J. 1975. “Rheologische Eigenschaften Silikat-Injizierter Sande.” Ph.D. dissertation, Institut für Bodenmechanik und Felsmechanik, Karlsruher Institut für Technologie.
Kutzner, C. 1991. Injektionen im Baugrund. Stuttgart, Germany: Enke.
Lade, P. 2016. Triaxial testing of soils. Hoboken, NJ: Wiley.
Liu, X. X., S. L. Shen, A. Zhou, and Y. S. Xu. 2019. “Evaluation of foam conditioning effect on groundwater inflow at tunnel cutting face.” Int. J. Numer. Anal. Methods Geomech. 43 (2): 463–481. https://doi.org/10.1002/nag.2871.
Maji, A. K., L. Schreyer, S. Donald, Q. Zuo, and D. Satpathi. 1995. “Mechanical properties of polyurethane-foam impact limiters.” J. Eng. Mech. 121 (4): 528–540. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:4(528).
Mane, J. V., S. Chandra, S. Sharma, H. Ali, V. M. Chavan, B. S. Manjunath, and R. J. Patel. 2017. “Mechanical property evaluation of polyurethane foam under quasi-static and dynamic strain rates—An experimental study.” Procedia Eng. 173: 726–731. https://doi.org/10.1016/j.proeng.2016.12.160.
Microtrac Retsch GmbH. 2021. “Particle characterization: Correlation between sieve analysis and image analysis made easy.” Accessed January 8, 2021. https://www.microtrac.de/dltmp/www/5e396c09-86c8-42f5-a041-7f30c3c9c754-ad644028a252/wp_DIA_sieving_0718_en.pdf.
Mori, L., M. Mooney, and M. Cha. 2018. “Characterizing the influence of stress on foam conditioned sand for EPB tunneling.” Tunnelling Underground Space Technol. 71 (1): 454–465. https://doi.org/10.1016/j.tust.2017.09.018.
Nicholson, P. G. 2014. Soil improvement and ground modification methods: Elsevier Reference Monographs. Oxford, UK: Elsevier.
Obi, B. E. 2018. “Structure–property relationships of polymeric foams.” In Polymeric foams structure-property-performance, 189–205. Oxford, UK: Elsevier.
Quebaud, S., M. Sibai, and J. P. Henry. 1998. “Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soil.” Tunnelling Underground Space Technol. 13 (2): 173–180. https://doi.org/10.1016/S0886-7798(98)00045-5.
Richeton, J., S. Ahzi, K. S. Vecchio, F. C. Jiang, and R. R. Adharapurapu. 2006. “Influence of temperature and strain rate on the mechanical behavior of three amorphous polymers: Cha-racterization and modeling of the compressive yield stress.” Int. J. Solids Struct. 43 (7–8): 2318–2335. https://doi.org/10.1016/j.ijsolstr.2005.06.040.
Schubert, A. 1985. “Ein Beitrag Zum Spannungs-Verformungsverhalten Silikatgel-Injizierter Sande.” Ph.D. dissertation, Lehrstuhl und Prüfamt für Grundbau, Bodenmechanik und Felsmechanik der Technischen Universität München, Technische Universität München.
Scucka, J., P. Martinec, and K. Soucek. 2015. “Polyurethane grouted gravel type geomaterials—A model study on relations between material structure and physical–mechanical properties.” Geotech. Test. J. 38 (2): 20140100. https://doi.org/10.1520/GTJ20140100.
Stetzler-Kaufmann, B. 1983. “Stoffverhalten Chemisch Injizierter Sande.” Ph.D. dissertation, Institut für Bodenmechanik und Felsmechanik, Karlsruher Institut für Technologie.
Stieß, M. 2009. Mechanische Verfahrenstechnik—Partikeltechnologie 1. Berlin, Heidelberg: Springer.
Thewes, M., and C. Budach. 2010. “Soil conditioning with foam during EPB tunnelling. Konditionierung Von Lockergesteinen Bei Erddruckschilden.” Geomechanik Tunnelbau 3 (3): 256–267. https://doi.org/10.1002/geot.201000023.
Ting, J. M., R. Torrence Martin, and C. C. Ladd. 1983. “Mechanisms of strength for frozen sand.” J. Geotech. Eng. 109 (10): 1286–1302. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:10(1286).
Tu, Z. H., V. P. W. Shim, and C. T. Lim. 2001. “Plastic deformation modes in rigid polyurethane foam under static loading.” Int. J. Solids Struct. 38 (50–51): 9267–9279. https://doi.org/10.1016/S0020-7683(01)00213-X.
Valentino, R., E. Romeo, and D. Stevanoni. 2014. “An experimental study on the mechanical behaviour of two polyurethane resins used for geotechnical applications.” Mech. Mater. 71 (Apr): 101–113. https://doi.org/10.1016/j.mechmat.2014.01.007.
Warner, J. 2004. Practical handbook of grouting: Soil, rock, and structures. Hoboken, NJ: Wiley.
Wei, Y., F. Wang, X. Gao, and Y. Zhong. 2017. “Microstructure and fatigue performance of polyurethane grout materials under compression.” J. Mater. Civ. Eng. 29 (9): 04017101. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001954.
Wu, Y., M. A. Mooney, and M. Cha. 2018. “An experimental examination of foam stability under pressure for EPB TBM tunneling.” Tunnelling Underground Space Technol. 77 (8–9): 80–93. https://doi.org/10.1016/j.tust.2018.02.011.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 148Issue 5May 2022

History

Received: Mar 10, 2021
Accepted: Dec 15, 2021
Published online: Feb 28, 2022
Published in print: May 1, 2022
Discussion open until: Jul 28, 2022

Authors

Affiliations

Ph.D. Candidate, Dept. of Civil, Geo and Environmental Engineering, Institute of Soil Mechanics and Foundation Engineering, Technical Univ. of Munich, Rock Mechanics and Tunnelling, Franz-Langinger-Str. 10, München 81245, Germany (corresponding author). ORCID: https://orcid.org/0000-0003-2666-7922. Email: [email protected]
Roberto Cudmani [email protected]
Professor, Dept. of Civil, Geo and Environmental Engineering, Institute of Soil Mechanics and Foundation Engineering, Technical Univ. of Munich, Rock Mechanics and Tunnelling, Franz-Langinger-Str. 10, München 81245, Germany. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Strength of Coarse-Grained Soil Stabilized by Poly (Vinyl Alcohol) Solution and Silica Fume under Wet–Dry Cycles, Polymers, 10.3390/polym14173555, 14, 17, (3555), (2022).
  • Study on Creep Behavior of Silty Clay Based on Fractal Derivative, Applied Sciences, 10.3390/app12168327, 12, 16, (8327), (2022).

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share