Abstract

The rigid inclusion technique has been used worldwide to reinforce soft soil for road and railway embankments and deep building foundations. This technique is studied through field tests and physical and numerical models. Most studies focus on embankments or slabs on soils reinforced with rigid inclusions. Previous research based on numerical modeling demonstrated that the load-transfer mechanisms for a rigid slab differ from those for an embankment. Here, a simplified physical model was developed to assess the load-transfer mechanism between the inclusion head and the load-transfer platform (LTP) under a rigid slab. This research focused on the use of an alternative material for the LTP, which is a compacted soil with or without cement. When the reinforced soil contribution is neglected, the LTP weight and applied load are transmitted completely to the inclusion cap (load-transfer efficiency of 100%). As the LTP material stiffness increases, the settlement magnitude decreases considerably. The experiments demonstrated that the applied load was transferred to the inclusion head through an inverted truncated load-transfer cone (LTC) over the inclusion; the external angle depended on the LTP material strength in accordance with Coulomb’s theory. The principal stress state at the base of the LTC also was determined. Equations are proposed to determine LTP thickness and inclusion spacing.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

This study was financially supported by the Fundação de Apoio à Pesquisa do Distrito Federal - Brazil (FAPDF) (Project 9885.56.40280.07042016), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES) (Project 88887.372021/2019-00), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brazil (CNPq).

References

ABNT (Associação Brasileira de Normas Técnicas). 2012. Soil-cement—Simple compression test of cylindrical specimens—Method of test. NBR 12025. Rio de Janeiro, Brazil: ABNT.
Almeida, M. S. S., H. O. Magnani, D. Dias, and L. O. G. Deotti. 2011. “Behaviour of three test embankments taken to failure on soft clay.” Soils Rocks 34 (4): 389–404.
Arthur, J. R. F., T. Dunstan, Q. A. J. L. Al-Ani, and A. Assadi. 1977. “Plastic deformation and failure in granular media.” Géotechnique 27 (1): 53–74. https://doi.org/10.1680/geot.1977.27.1.53.
Blanc, M., G. Raul, L. Thorel, and M. Almeida. 2013. “Centrifuge investigation of load transfer mechanisms in a granular mattress above a rigid inclusions network.” Geotext. Geomembr. 36 (Feb): 92–105. https://doi.org/10.1016/j.geotexmem.2012.12.001.
Briançon, L. 2002. Renforcement des sols par inclusions rigides–Etat de l’art en France et à l’étranger. Paris: IREX.
Briançon, L., D. Dias, and C. Simon. 2015. “Monitoring and numerical investigation of a rigid inclusions–reinforced industrial building.” Can. Geotech. J. 52 (10): 1592–1604. https://doi.org/10.1139/cgj-2014-0262.
BSI (British Standards Institution). 2010. Code of practice for strengthened/reinforced soils and others fills, section 8. BS 8006. London: BSI.
Carlsson, B. 1987. Armerad jord beräkningsprinciper för vertical väggar, branta slänter, bankar på lös undergrund, bankra på pålar. Linköping, Sweden: Terrateam AB.
Chen, Y. M., W. Cao, and R. P. Chen. 2008. “An experimental investigation of soil arching within basal reinforced and unreinforced piled embankments” Geotext. Geomembr. 26 (2): 164–174. https://doi.org/10.1016/j.geotexmem.2007.05.004.
Chevalier, B., P. Villard, and G. Combe. 2011. “Investigation of load transfer mechanisms in geotechnical earth structures with thin fill platforms reinforced by rigid inclusions.” Int. J. Geomech. 11 (3): 239–250. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000083.
Clough, G. W., N. Sitar, R. C. Bachus, and N. S. Rad. 1981. “Cemented sands under static loading.” J. Geotech. Eng. Div. 107 (6): 799–817. https://doi.org/10.1061/AJGEB6.0001152.
Combarieu, O. 1990. “Foundations superficielles sur sol amélioré par inclusions rigides verticales.” Rev. Fr. Géotech. 53: 33–44. https://doi.org/10.1051/geotech/1990053033.
Coulomb, C. A. 1776. “Essai sur une application des regles de maximis et minimisa quelqes de stratique relatifs a l’ architecture.” In Vol. 7 of Memoires de mathematique et de physique, 343–382. Paris: Academie royale des sciences.
Cozzolino, V. M. N., and J. S. Nogami. 1993. “Classificação geotécnica MCT para solos tropicais.” Solos e Rochas 16 (2): 77–91.
Dinh, A. Q. 2010. Etude sur modele physique des mécanismes de transfert de charge dans les sols renforcés par inclusions rigides. Application au dimensionnement. [Study on physical model of load-transfer mechanism in soils reinforced by rigid inclusions. Application to sizing]. [In French.] Ph.D. thesis, Lunam Univ., LPCP. https://pastel.archives-ouvertes.fr/pastel-00517738.
Fagundes, D. D. F., M. D. S. S. D. Almeida, R. Girout, M. Blanc, and L. Thorel. 2015. “Behaviour of piled embankment without reinforcement.” Proc. Inst. Civ. Eng. Geotech. Eng. 168 (6): 514–525. https://doi.org/10.1680/jgeen.14.00155.
Fonseca, E. C. A., and E. M. Palmeira. 2018. “Evaluation of the accuracy of design methods for geosynthetic-reinforced piled embankments.” Can. Geotech. J. 56 (6): 761–773. https://doi.org/10.1139/cgj-2018-0071.
Gu, J., C. Zeng, H. Lyu, and J. Yang. 2020. “Effects of cement content and curing period on strength enhancement of cemented calcareous sand.” In Marine georesources and geotechnology. Abingdon, UK: Taylor & Francis. https://doi.org/10.1080/1064119X.2020.1804018.
Hewlett, W. J., and M. F. Randolph. 1988. “Analysis of piled embankments.” Ground Eng. 21 (3): 12–18.
IREX (Institut pour la Recherche Appliquée et l’expérimentation en Génie Civil). 2012. Rigid Inclusion Ground Improvements (Asiri National Project). Recommendations for the design construction and control of rigid inclusion ground improvements. Paris: IREX’s Soil Specialist Cluster.
Jenck, O., D. Dias, and R. Kastner. 2005. “Soft ground improvement by vertical rigid piles two-dimensional physical modelling and comparison with current design methods.” Soils Found. 45 (6): 15–30. https://doi.org/10.3208/sandf.45.15.
Jenck, O., D. Dias, and R. Kastner. 2007. “Two-dimensional physical and numerical modeling of a pile-supported earth platform over soft soil.” J. Geotech. Geoenviron. 133 (3): 295–305. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:3(295).
Le Hello, B., and P. Villard. 2009. “Embankments reinforced by piles and geosynthetics -Numerical and experimental studies dealing with the transfer of load on the soil embankment.” Eng. Geol. 106 (1–2): 78–91. https://doi.org/10.1016/j.enggeo.2009.03.001.
Lemos, S. G. F. P., M. D. S. S. Almeida, N. C. Consoli, T. Z. Nascimento, and U. F. Polido. 2020. “Field and laboratory investigation of highly organic clay stabilized with portland cement.” J. Mater. Civ. Eng. 32 (4): 04020063. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003111.
López, R., L. Shao, I. Lam Po, and F. Gularte. 1999. “Composite ground reinforcement foundation system for large capacity grain domes under static and seismic loads.” In Proc., XI PCSMGE, 1–16. Foz do Iguaçu, Brazil: Brazilian Society of Soil Mechanics.
Low, B. K., S. K. Tang, and V. Choa. 1994. “Arching in piled embankments.” J. Geotech. Eng. 120 (11): 1917–1938. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(1917).
Nunez, M. A., L. Briançon, and D. Dias. 2013. “Analyses of a pile-supported embankment over soft clay: Full-scale experiment, analytical and numerical approaches.” Eng. Geol. 153 (Feb): 53–67. https://doi.org/10.1016/j.enggeo.2012.11.006.
Okyay, U. S., and D. Dias. 2010. “Use of lime and cement treated soils as pile supported load transfer platform.” Eng. Geol. 114 (1–2): 34–44. https://doi.org/10.1016/j.enggeo.2010.03.008.
Okyay, U. S., D. Dias, L. Thorel, and G. Rault. 2014. “Centrifuge modelling of a pile-supported granular earth-platform.” J. Geotech. Geoenviron. 140 (2): 04013015. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001004.
Pinilla, J., G. A. Miller, A. Cerato, and D. Snethen. 2011. “Influence of curing time on the resilient modulus of chemically stabilized soils.” Geotech. Test. J. 34 (4): 364–372. https://doi.org/10.1520/GTJ103369.
Prietto, P. D. M. 1996. “Study of the mechanical behavior of an artificially cemented soil.” [In Portuguese.] M.Sc. thesis, Dept. of Civil Engineering, Federal Univ. of Rio Grande do Sul.
Quigley, P., J. O’Malley, and M. Rodgers. 2003. “Performance of a trial embankment constructed on soft compressible estuarine deposits at Shannon, Ireland.” In Proc., Int. Workshop on Geotechnics of Soft Soils, Theory and Practice, 619–624. Essen, Germany: Verlag Glückauf.
Rault, G., L. Thorel, A. Neel, S. Buttigieg, F. Derkx, G. Six, and U. Okyay. 2010. “Mobile tray for simulation of 3D load transfer in pile-supported earth platforms.” In Proc., 7th Int. Conf. on Physical Modelling in Geotechnics, edited by J. Laue, S. M. Springman, and L. Seward, 261–266. Zurich, Switzerland: Taylor & Francis.
Rebolledo, J. F. R., R. F. P. Leon, and J. Camapum de Carvalho. 2019. “Performance evaluation of rigid inclusion foundations in the reduction of settlements.” Soils Rocks 42 (3): 265–279. https://doi.org/10.28927/SR.423265.
Rodríguez-Rebolledo, J. F. 2010. “Modelado del comportamiento de pilotes e inclusiones sometidos a consolidación regional, en la zona lacustre de la ciudad de México” [Modeling the behavior of piles and inclusions subjected to regional subsidence, in the lacustrine zone of Mexico City]. [In Spanish.] Ph.D. thesis, Programa de Maestría y Doctorado en Ingeniería, Universidad Nacional Autónoma de México. https://repositorio.unam.mx/contenidos/82525.
Rodríguez-Rebolledo, J. F., and G. Auvinet-Guichard. 2006. “Rigid inclusions in México city soft soils.” In Proc., Int. Symp.: Rigid Inclusions in Difficult Soft Soil Conditions, edited by G. Auvinet. Mexico City: TC36 ISSMGE.
Rodríguez-Rebolledo, J. F., G. Auvinet-Guichard, and H. E. Martínez-Carvajal. 2015. “Settlement analysis of friction piles in consolidating soft soils.” Dyna 82 (192): 211–220. https://doi.org/10.15446/dyna.v82n192.47752.
Roscoe, K. H. 1970. “The influence of strains in soil mechanics” Géotechnique 20 (2): 129. https://doi.org/10.1680/geot.1970.20.2.129.
Sanbonsuge, K., K. Vasconcelos, L. Bernucci, and E. de Moura. 2017. “Efeito da umidade inicial e do tempo de cura nas propriedades mecânicas de misturas solo-cimento.” Transportes 25 (4): 68–82. https://doi.org/10.14295/transportes.v25i4.1257.
Santoyo, E., and E. Ovando. 2006. “Geotechnical considerations for hardening the subsoil in Mexico City’s Metropolitan Cathedral.” In Proc., Int. Symp.: Rigid Inclusions in Difficult Soft Soil Conditions, edited by G. Auvinet, 171–178. Mexico City: TC36 ISSMGE.
Saxena, S. K., and R. M. Lastrico. 1978. “Static properties of lightly cemented sand.” J. Geotech. Eng. Div. 104 (12): 1449–1464. https://doi.org/10.1061/AJGEB6.0000728.
Schlosser, F., H. M. Jacobsen, and I. Juran. 1984. “Le renforcement des sols.” Rev. Fr. Géotech. 29: 7–33. https://doi.org/10.1051/geotech/1984029007.
Simon, B., and F. Schlosser. 2006. “Soil reinforcement by vertical stiff inclusions in France.” In Proc., Int. Symp.: Rigid Inclusions in Difficult Soft Soil Conditions, edited by G. Auvinet. Mexico City: TC36 ISSMGE.
Specht, L. P. 2000. “Comportamento de misturas solo-cimento-fibra submetidas a carregamentos estáticos e dinâmincos visando a pavimentação.” [Behavior of soil-cement-fiber mixtures subjected to static and dynamic loads for paving]. [In Portuguese.] M.Sc. thesis, Dept. of Civil Engineering, Universidade Federal do Rio Grande do Sul. https://www.lume.ufrgs.br/bitstream/handle/10183/118555/000270022.pdf?sequence=1.
Svano, G., T. Ilstad, G. Eiksund, and A. Want. 2000. “Alternative calculation principle for design of piles embankments with base reinforcement.” In Proc., 4th Int. Conf. of Ground Improvement Geosystem. Helsinki, Finland: Finnish Geotechnical Society.
van Eekelen, S. J. M., A. Bezuijen, H. J. Lodder, and A. F. van Tol. 2012a. “Model experiments on piled embankments. Part I.” Geotext. Geomembr. 32 (Jun): 69–81. https://doi.org/10.1016/j.geotexmem.2011.11.002.
van Eekelen, S. J. M., A. Bezuijen, H. J. Lodder, and A. F. van Tol. 2012b. “Model experiments on piled embankments. Part II.” Geotext. Geomembr. 32 (Jun): 82–94. https://doi.org/10.1016/j.geotexmem.2011.11.003.
van Eekelen, S. J. M., and J. Han. 2020. “Geosynthetic-reinforced pile-supported embankments: State of the art.” Geosynth. Int. 27 (2): 112–141. https://doi.org/10.1680/jgein.20.00005.
Vesic, A. S. 1970. Load transfer in pile-soil systems: Soil mechanics series. Durham, NC: School of Engineering, Duke Univ.
Wang, S.-L., and H. Baaj. 2020. “Treatment of weak subgrade materials with cement and hydraulic road binder (HRB)” Road Mater. Pavement Des. 22 (8): 1756–1779. https://doi.org/10.1080/14680629.2020.1712224.
Wood, H. J. 2003. “The design and construction of pile-supported embankments for the A63 Selby Bypass.” In Proc., Int. Conf. on Foundations: Innovations, Observations, Design and Practice, 941–950. Dundee, Scotland: British Geotechnical Association.
Zanziger, H., and E. Gartung. 2002. “Performance of a geogrid reinforced railway embankment on piles.” In Proc., 7th Int. Conf. on Geosynthetics, edited by P. Delmas, J.-P. Gourc, and H. Girard, 381–386. Lisse, Netherlands: Swets and Zeitlinger.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 10October 2021

History

Received: Jun 3, 2020
Accepted: Jun 21, 2021
Published online: Aug 14, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 14, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Candidate, PPG-Geotecnia, Univ. of Brasília, Edificio SG-12, 1ro. Andar, Campus Universitário Darcy Ribeiro, Asa Norte, CEP 70.910-900, Brasília DF., Brazil. ORCID: https://orcid.org/0000-0002-2483-2173. Email: [email protected]
Professor, PPG-Geotecnia, Univ. of Brasília, Edificio SG-12, 1ro. Andar, Campus Universitário Darcy Ribeiro, Asa Norte, CEP 70.910-900, Brasília DF., Brazil (corresponding author). ORCID: https://orcid.org/0000-0003-2929-7381. Email: [email protected]
Danilo Vítor dos Santos Mützenberg [email protected]
Master’s Candidate, PPG-Geotecnia, Univ. of Brasília, Edificio SG-12, 1ro. Andar, Campus Universitário Darcy Ribeiro, Asa Norte, CEP 70.910-900, Brasília DF., Brazil. Email: [email protected]
Bernardo Caicedo [email protected]
Professor, Dept. of Civil and Environmental Engineering, Univ. of Los Andes, Edificio Mario Laserna, Cra 1 Este N° 19A–40, P.C.: 111711 Bogotá, Colombia. Email: [email protected]
Gilson de Farias Neves Gitirana Jr. [email protected]
Professor, Escola de Engenharia Civil e Ambiental, Universidade Federal de Goiás, Bloco A, Sala 11, Avenida Universitária, Quadra 86, Lote 1488, Setor Leste Universitário, CEP 74605-220, Goiânia GO, Brazil. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • The Effect of Rigid Inclusions on the Dynamic Response of Highway Embankment, Engineering, Technology & Applied Science Research, 10.48084/etasr.5400, 13, 1, (9843-9848), (2023).
  • FUNCTIONAL AND STRUCTURAL CONNECTIONS IN THE ARCHITECTURE OF MODERN INDUSTRIAL BUILDINGS, Construction Materials and Products, 10.34031/2618-7183-2022-5-1-15-37, (15-37), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share