Abstract

This paper includes an investigation of the thermal conductivity of biocemented soils to better understanding the regimes of heat transmission through soils treated by microbially induced calcium carbonate precipitation (MICP). A series of thermal conductivity tests using the transient plane source method (TPS) was performed on biocemented silica sand specimens with different gradations, void ratios, and MICP treatment cycles. The results showed that MICP treatment greatly improved the thermal conductivity of sand specimens. An increase in uniformity coefficient or a decrease in void ratio of the sand resulted in an increase in the thermal conductivity of MICP-treated specimens for a given MICP treatment cycle. The increment of thermal conductivity of MICP-treated specimens with respect to that of untreated specimens was also affected by gradation, void ratio, and content of calcium carbonate. The greatest improvements in thermal conductivity were achieved for sands having an initial degree of saturation between 0.82 and 0.85. An empirical equation was established to predict the thermal conductivity of MICP-treated silica sand with different variables, which may be useful in designing energy piles in biocemented sand layers.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

The authors would like to acknowledge the financial support from the National Nature Science Foundation of China (Grant Nos. 41831282, 51922024, and 51678094). We also appreciate the help of Professor Huyuan Zhang from Lanzhou University in the use of the Thermal Constant Analyzer.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM D4253-16. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254-16 West Conshohocken, PA: ASTM.
ASTM. 2019. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass. ASTM D2216. West Conshohocken, PA: ASTM.
Belkhatir, M., A. Arab, T. Schanz, H. Missoum, and N. Della. 2011. “Laboratory study on the liquefaction resistance of sand-silt mixtures: Effect of grading characteristics.” Granul. Matter 13 (5): 599–609. https://doi.org/10.1007/s10035-011-0269-0.
Bohac, V., M. K. Gustavsson, L. Kubicar, and S. E. Gustafsson. 2000. “Parameter estimations for measurements of thermal transport properties with the hot disk thermal constants analyzer.” Rev. Sci. Instrum. 71 (6): 2452–2455. https://doi.org/10.1063/1.1150635.
Brandl, H. 2006. “Energy foundations and other thermo-active ground structures.” Géotechnique 56 (2): 81–122. https://doi.org/10.1680/geot.2006.56.2.81.
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Cheng, L., and R. Cord-Ruwisch. 2012. “In situ soil cementation with ureolytic bacteria by surface percolation.” Ecol. Eng. 42 (May): 64–72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Chou, C.-W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Dong, Y., J. S. McCartney, and N. Lu. 2015. “Critical review of thermal conductivity models for unsaturated soils.” Geotech. Geol. Eng. 33 (2): 207–221. https://doi.org/10.1007/s10706-015-9843-2.
El Mountassir, G., R. J. Lunn, H. Moir, and E. MacLachlan. 2014. “Hydrodynamic coupling in microbially mediated fracture mineralization: Formation of self-organized groundwater flow channels.” Water Resour. Res. 50 (1): 1–16. https://doi.org/10.1002/2013WR013578.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms.” Scientifc Reports 9 (1): 11517. https://doi.org/10.1038/s41598-019-47973-0.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and M. Tsesarsky. 2018. “Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths.” J. Geotech. Geoenviron. Eng. 144 (1): 04017098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001804.
Gustafsson, S. E. 1991. “Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials.” Rev. Sci. Instrum. 62 (3): 797–804. https://doi.org/10.1063/1.1142087.
Gustavsson, M., E. Karawacki, and S. E. Gustafsson. 1994. “Thermal conductivity, thermal diffusivity, and specific heat of thin samples from transient measurements with hot disk sensors.” Rev. Sci. Instrum. 65 (12): 3856–3859. https://doi.org/10.1063/1.1145178.
He, J., and J. Chu. 2014. “Undrained responses of microbially desaturated sand under monotonic loading.” J. Geotech. Geoenviron. Eng. 140 (5): 04014003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001082.
Hot Disk Inc. 1999. Hot disk thermal constants analyzer. Uppsala, Sweden: Hot Disk.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand-clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Laloui, L., M. Nuth, and L. Vulliet. 2006. “Experimental and numerical investigations of the behaviour of a heat exchanger pile.” Int. J. Numer. Anal. Met. 30 (8): 763–781. https://doi.org/10.1002/nag.499.
Lee, J., T. S. Yun, and S. U. Choi. 2015. “The effect of particle size on thermal conduction in granular mixtures.” Materials (Basel) 8 (7): 3975–3991. https://doi.org/10.3390/ma8073975.
Lee, M. L., W. S. Ng, and Y. Tanaka. 2013. “Stress-deformation and compressibility responses of bio-mediated residual soils.” Ecol. Eng. 60 (Nov): 142–149. https://doi.org/10.1016/j.ecoleng.2013.07.034.
Lin, H., M. T. Suleiman, H. M. Jabbour, and D. G. Brown. 2018. “Bio-grouting to enhance axial pull-out response of pervious concrete ground improvement piles.” Can. Geotech. J. 55 (1): 119–130. https://doi.org/10.1139/cgj-2016-0438.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian Jr. 2016. “Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Lu, N. 2020. “Unsaturated soil mechanics: Fundamental challenges, breakthroughs, and opportunities.” J. Geotech. Geoenviron. Eng. 146 (5): 02520001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002233.
Lu, N., and Y. Dong. 2015. “Closed-form equation for thermal conductivity of unsaturated soils at room temperature.” J. Geotech. Geoenviron. Eng. 141 (6): 04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295.
Lu, N., and W. J. Likos. 2004. Unsaturated soil mechanics. Hoboken, NJ: Wiley.
Lu, N., and C. Zhang. 2019. “Soil sorptive potential: Concept, theory, and verification.” J. Geotech. Geoenviron. Eng. 145 (4): 04019006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002025.
Ma, G., X. He, X. Jiang, H. Liu, J. Chu, and Y. Xiao. 2021. “Strength and permeability of bentonite-assisted biocemented coarse sand.” Can. Geotech. J. 57 (7): 969–981. https://doi.org/10.1139/cgj-2020-0045.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Martinez, A., L. Huang, and M. G. Gomez. 2019. “Thermal conductivity of MICP-treated sands at varying degrees of saturation.” Geotech. Lett. 9 (1): 15–21. https://doi.org/10.1680/jgele.18.00126.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Minto, J. M., R. J. Lunn, and G. El Mountassir. 2019. “Development of a reactive transport model for field-scale simulation of microbially induced carbonate precipitation.” Water Resour. Res. 55 (8): 7229–7245. https://doi.org/10.1029/2019WR025153.
Minto, J. M., E. MacLachlan, G. El Mountassir, and R. J. Lunn. 2016. “Rock fracture grouting with microbially induced carbonate precipitation.” Water Resour. Res. 52 (11): 8827–8844. https://doi.org/10.1002/2016WR018884.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Montoya, B. M., S. Safavizadeh, and M. A. Gabr. 2019. “Enhancement of coal ash compressibility parameters using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 145 (5): 04019018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002036.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
O’Donnell, T. S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Peric, D., A. E. Cossel, and S. A. Sarna. 2020. “Analytical solutions for thermomechanical soil structure interaction in end-bearing energy piles.” J. Geotech. Geoenviron. Eng. 146 (7): 04020047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002269.
Ravera, E., M. Sutman, and L. Laloui. 2020. “Load transfer method for energy piles in a group with pile-soil-slab-pile interaction.” J. Geotech. Geoenviron. Eng. 146 (6): 04020042. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002258.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Stewart, M. A., and J. S. McCartney. 2014. “Centrifuge modeling of soil-structure interaction in energy foundations.” J. Geotech. Geoenviron. Eng. 140 (4): 04013044. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001061.
Tarnawski, V. R., and W. H. Leong. 2016. “Advanced geometric mean model for predicting thermal conductivity of unsaturated soils.” Int. J. Thermophys. 37 (2): 18. https://doi.org/10.1007/s10765-015-2024-y.
Terzis, D., and L. Laloui. 2019. “Cell-free soil bio-cementation with strength, dilatancy and fabric characterization.” Acta Geotech. 14 (3): 639–656. https://doi.org/10.1007/s11440-019-00764-3.
Tobler, D. J., J. M. Minto, G. El Mountassir, R. J. Lunn, and V. R. Phoenix. 2018. “Microscale analysis of fractured rock sealed with microbially induced CaCO3 precipitation: Influence on hydraulic and mechanical performance.” Water Resour. Res. 54 (10): 8295–8308. https://doi.org/10.1029/2018WR023032.
Tyler, S. W., and S. W. Wheatcraft. 1992. “Fractal scaling of soil particle-size distributions: analysis and limitations.” Soil Sci. Soc. Am. J. 56 (2): 362–369. https://doi.org/10.2136/sssaj1992.03615995005600020005x.
van Paassen, L. A. 2009. “Biogrout, ground improvement by microbial induced carbonate precipitation.” Ph.D. thesis, Dept. of Biotechnology, Delft Univ. of Technology.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Venda Oliveira, P. J., M. S. da Costa, J. N. P. Costa, and M. Fernanda Nobre. 2015. “Comparison of the ability of two bacteria to improve the behavior of sandy soil.” J. Mater. Civil. Eng. 27 (1): 06014025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001138.
Venuleo, S., L. Laloui, D. Terzis, T. Hueckel, and M. Hassan. 2016. “Microbially induced calcite precipitation effect on soil thermal conductivity.” Geotech. Lett. 6 (1): 39–44. https://doi.org/10.1680/jgele.15.00125.
Wang, Z., N. Zhang, J. Ding, Q. Li, and J. Xu. 2020. “Thermal conductivity of sands treated with microbially induced calcite precipitation (MICP) and model prediction.” Int. J. Heat Mass. Tran. 147 (Feb): 118899. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118899.
Wang, Z., N. Zhang, F. Lin, J. Ding, and H. Yang. 2019. “Thermal conductivity of dry sands treated with microbial-induced calcium carbonate precipitation.” Adv. Mater. Sci. Eng. 2019 (Feb): 4562958. https://doi.org/10.1155/2019/4562958.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wu, C., J. Chu, S. Wu, and W. Guo. 2019. “Quantifying the permeability reduction of biogrouted rock fracture.” Rock Mech. Rock Eng. 52 (3): 947–954. https://doi.org/10.1007/s00603-018-1669-9.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and biocementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018a. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107: 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020a. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., H. L. Liu, B. Nan, and J. S. McCartney. 2018b. “Gradation-dependent thermal conductivity of sands.” J. Geotech. Geoenviron. Eng. 144 (9): 06018010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001943.
Xiao, Y., B. Nan, and J. S. McCartney. 2019c. “Thermal conductivity of sand-tire shred mixtures.” J. Geotech. Geoenviron. Eng. 145 (11): 06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155.
Xiao, Y., A. W. Stuedlein, Z. Pan, H. Liu, T. M. Evans, X. He, H. Lin, J. Chu, and L. A. van Paassen. 2020b. “Toe bearing capacity of precast concrete piles through biogrouting improvement.” J. Geotech. Geoenviron. Eng. 146 (12): 06020026. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002404.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019d. “Effect of particle shape on strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Yun, T. S., and J. C. Santamarina. 2008. “Fundamental study of thermal conduction in dry soils.” Granul. Matter 10 (3): 197–207. https://doi.org/10.1007/s10035-007-0051-5.
Zhang, N., and Z. Wang. 2017. “Review of soil thermal conductivity and predictive models.” Int. J. Therm. Sci. 117 (Jul): 172–183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013.
Zhang, N., X. Yu, A. Pradhan, and A. J. Puppala. 2019. “Effects of particle size and fines content on thermal conductivity of quartz sands.” Transp. Res. Rec. 2510 (1): 36–43. https://doi.org/10.3141/2510-05.
Zhang, X. R., G. Q. Kong, L. H. Wang, and X. L. Xu. 2020. “Measurement and prediction on thermal conductivity of fused quartz.” Scientifc Rep. 10 (1): 6559. https://doi.org/10.1038/s41598-020-62299-y.
Zhen, Z.-L., G.-L. Ma, H.-Y. Zhang, Y.-X. Gai, and Z.-Y. Su. 2019. “Thermal conductivities of remolded and undisturbed loess.” J. Mater. Civil. Eng. 31 (2): 04018379. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002595.
Zhou, W.-H., K.-V. Yuen, and F. Tan. 2014. “Estimation of soil-water characteristic curve and relative permeability for granular soils with different initial dry densities.” Eng. Geol. 179 (Sep): 1–9. https://doi.org/10.1016/j.enggeo.2014.06.013.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 10October 2021

History

Received: Jun 27, 2020
Accepted: May 21, 2021
Published online: Aug 11, 2021
Published in print: Oct 1, 2021
Discussion open until: Jan 11, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, School of Civil Engineering, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Guoliang Ma [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
John S. McCartney, F.ASCE [email protected]
P.E.
Professor and Department Chair, Dept. of Structural Engineering, Univ. of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0085. Email: [email protected]
Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., 10 Blk N1, 50 Nanyang Ave., Singapore 639798. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Effect of Fines Content on Calcium Carbonate Precipitation and Thermal Properties of Biocemented Sand, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11925, 150, 7, (2024).
  • Thermal Conductivity Function for Fine-Grained Unsaturated Soils Linked with Water Retention by Capillarity and Adsorption, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11669, 150, 1, (2024).
  • Experimental Study on Silt Soil Improved by Microbial Solidification with the Use of Lignin, Microorganisms, 10.3390/microorganisms11020281, 11, 2, (281), (2023).
  • Experimental Study on the Mechanical Behaviors of Aeolian Sand Treated by Microbially Induced Calcite Precipitation (MICP) and Basalt Fiber Reinforcement (BFR), Materials, 10.3390/ma16051949, 16, 5, (1949), (2023).
  • Influence of Different Particle Size and Rock Block Proportion on Microbial-Solidified Soil–Rock Mixture, Applied Sciences, 10.3390/app13031325, 13, 3, (1325), (2023).
  • Investigation on the Microstructure, Unconfined Compressive Strength, and Thermal Conductivity of Compacted CDG Soil by MICP Treatment during Curing, Journal of Materials in Civil Engineering, 10.1061/JMCEE7.MTENG-14901, 35, 6, (2023).
  • Closure to “Rainfall-Induced Erosion of Biocemented Graded Slopes”, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8403, 23, 4, (2023).
  • Fracture of Interparticle MICP Bonds under Compression, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8282, 23, 3, (2023).
  • Dynamic Shear Strength Characteristics of Lightweight Sand-EPS Soil, Sustainability, 10.3390/su14127397, 14, 12, (7397), (2022).
  • Review of Strength Improvements of Biocemented Soils, International Journal of Geomechanics, 10.1061/(ASCE)GM.1943-5622.0002565, 22, 11, (2022).
  • See more

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share