Technical Papers
May 24, 2021

Effects of Enzyme and Microbially Induced Carbonate Precipitation Treatments on the Response of Axially Loaded Pervious Concrete Piles

This article has a reply.
VIEW THE REPLY
Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 8

Abstract

EICP (enzyme induced carbonate precipitation) and MICP (microbially induced carbonate precipitation) treatments were applied through pervious concrete model piles to cement soil around the piles and enhance soil-pile interaction and pile capacity. The behaviors of the pervious concrete piles treated by EICP and MICP when subjected to axial compression loading were compared with each other and with an untreated pervious concrete pile. These tests were performed on 1/10th-scale model piles in the soil-structure interaction (SSI) testing facility at Lehigh University. The piles and surrounding soil were instrumented with strain gauges, bender elements, in-soil null pressure sensors, and a tactile pressure sheet. The responses of the pervious concrete piles and surrounding soil were compared through analysis of shear wave (S-wave) velocities in the treated and untreated soil zones, load transfer along the piles at the ultimate load condition, soil moisture content, calcium carbonate (CaCO3) content and ammonium (NH4+) concentration in soil, and the characteristics of the precipitated CaCO3 crystals along the soil-pile interface. In addition, comparisons with consolidated drained (CD) triaxial test results were made among sand without treatment and with EICP and MICP treatments. The results presented in this paper demonstrated that both EICP and MICP treatments can create a cemented soil zone surrounding the pervious concrete pile and improve the pile capacity and load transfer under compression loading.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

The data used to support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors acknowledge the support of the National Science Foundation (NSF) Civil, Mechanical, and Manufacturing Innovation (CMMI) Division under Grant No. CMMI-1233566 and the NSF Engineering Research Center program under Collaborative Agreement No. ERC-1449501. The authors are grateful for this support. Any opinions or positions expressed in this article are those of the authors only and do not reflect the opinions or positions of the NSF. The research team acknowledges the efforts of several graduate students, including Hanna M. Jabbour, Mathu Davis, Suguang Xiao, and Lusu Ni. Also, the authors acknowledge the help of Edward Tomlinson, and Darrick Fritchman, technician, and instrumentation and system specialist at Lehigh University’s Advanced Technology for Large Structural Systems (ATLSS) Engineering Research Center.

References

Almajed, A., H. Khodadadi Tirkolaei, and E. Kavazanjian. 2018. “Baseline investigation on enzyme-induced calcium carbonate precipitation.” J. Geotech. Geoenviron. Eng. 144 (11): 04018081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001973).
Almajed, A., H. K. Tirkolaei, E. Kavazanjian, and N. Hamdan. 2019. “Enzyme induced biocementated sand with high strength at low carbonate content.” Sci. Rep. 9 (1): 1–7. https://doi.org/10.1038/s41598-018-38361-1.
Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
APHA (American Public Health Association). 1992. Standard methods for the examination of water and wastewater, 18th ed. Washington, DC: APHA.
ASTM. 2009a. Standard test method for density and void content of freshly mixed pervious concrete. West Conshohocken, PA: ASTM.
ASTM. 2009b. Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM.
ASTM. 2009c. Standard test method for splitting tensile strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM.
ASTM. 2009d. Standard test method for infiltration rate of in place pervious concrete. West Conshohocken, PA: ASTM.
ASTM. 2009e. Standard test method for deep foundations under static axial compressive load. West Conshohocken, PA: ASTM.
Bang, S. S., S. Frutiger, L. M. Nehl, and B. L. Comes. 2009. “Application of novel biological technique in dust suppression.” In Proc., Transportation Research Board 88th Annual Meeting. Washington, DC: Transportation Research Board.
Bick, P., H. Bastola, M. T. Suleiman, J. Gu, P. Diplas, D. Brown, and N. Zouari. 2019. Minimizing wind erosion using microbial induced carbonate precipitation. Reston, VA: ASCE.
Bruce, D. A. 1986a. “Enhancing the performance of large diameter piles by grouting: Part 1.” Ground Eng. 19 (4): 9–15.
Bruce, D. A. 1986b. “Enhancing the performance of large diameter piles by grouting: Part 2.” Ground Eng. 19 (5): 1121–1126.
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Cetin, K. O., T. L. Youd, R. B. Seed, J. D. Bray, J. P. Stewart, H. T. Durgunoglu, W. Lettis, and M. T. Yilmaz. 2004. “Liquefaction-induced lateral spreading at Izmit Bay during the Kocaeli (izmit)-Turkey earthquake.” J. Geotech. Eng. 130 (12): 1300–1313. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:12(1300).
Cheng, L., and R. Cord-Ruwisch. 2013. “Upscaling effects of soil improvement by microbially induced calcite precipitation by surface percolation.” Geomicrobiol. J. 31 (5): 396–406. https://doi.org/10.1080/01490451.2013.836579.
Chou, C., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Dapp, S., and B. Dan. 2010. “Evaluation of base grouted drilled shafts at the Audubon Bridge.” In Proc., GeoFlorida 2010, Advances in Analysis, Modeling & Design, 1553–1562. Reston, VA: ASCE.
Dapp, S. D., and G. Mullins. 2002. “Pressure grouting drilled shaft tips: Full-scale research investigation for silty and shelly sands.” In Deep Foundations 2002, Geotechnical Special Publication No. 116, 335–350. Reston, VA: ASCE.
Darby, K. M., G. L. Hernandez, J. T. DeJong, R. W. Boulanger, M. G. Gomez, and D. W. Wilson. 2019. “Centrifuge model testing of liquefaction mitigation via microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 145 (10): 04019084. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002122.
DeJong, J. T., et al. 2013. “Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges.” Géotechnique 63 (4): 287–301. https://doi.org/10.1680/geot.SIP13.P.017.
DeJong, J. T., M. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., and Z. J. Westgate. 2009. “Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior.” J. Geotech. Geoenviron. Eng. 135 (11): 1646–1660. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:11(1646).
DeJong, J. T., D. J. White, and M. F. Randolph. 2006. “Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry.” Soils Found. 46 (1): 15–28. https://doi.org/10.3208/sandf.46.15.
Do, J., B. M. Montoya, and M. A. Gabr. 2019. “Simulated implementation approach for microbially induced carbonate precipitation improvement of soil adjacent to piles.” Geocongress 21 (Mar): 280–288. https://doi.org/10.1061/9780784482117.028.
Fattahpour, V., B. A. Baudet, and J. W. Sze. 2015. “Laboratory investigation of shaft grouting.” Proc. ICE-Geotech. Eng. 168 (1): 65–74. https://doi.org/10.1680/geng.13.00130.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379).
Garcia, N. F., J. R. Valdes, and D. D. Cortes. 2015. “Strength characteristics of polymer-bonded sands.” Geotechnique Lett. 5 (3): 212–216. https://doi.org/10.1680/jgele.15.00089.
Gomez, M. G., B. C. Martinez, J. T. DeJong, C. E. Hunt, L. A. deVlaming, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Gouvenot, D., and F. D. Gabiax. 1975. “A new foundation technique using piles sealed by concrete under high pressure.” In Proc., 7th Annual Offshore Technology Conf., 641–656. Houston: American Institute of Mining.
Hamdan, N., E. Kavazanjian, and S. O’Donnell. 2013. “Carbonate cementation via plant derived urease.” In Proc., 18th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 2–6. London: International Society for Soil Mechanics and Geotechnical Engineering.
Hamdan, N., E. Kavazanjian, B. E. Rittmann, and I. Karatas. 2011. “Carbonate mineral precipitation for soil improvement through microbial denitrification.” In GeoFrontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication 211, 3925–3934. Reston, VA: ASCE.
Hamdan, N. M. 2015. “Applications of enzyme induced carbonate precipitation (EICP) for soil improvement.” Ph.D. thesis, School of Sustainable Engineering and the Built Environment, Arizona State Univ.
Harkes, M. P., L. A. van Paassen, J. L. Booster, V. S. Whiffin, and M. C. M. van Loosdrecht. 2010. “Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement.” Ecol. Eng. 36 (2): 112–117. https://doi.org/10.1016/j.ecoleng.2009.01.004.
Hu, L., and J. Pu. 2004. “Testing and modeling of soil–structure interface.” J. Geotech. Geoenviron. Eng. 130 (8): 851–860. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:8(851).
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Javadi, N., H. Khodadadi, N. Hamdan, and E. Kavazanjian Jr. 2018. “EICP treatment of soil by using urease enzyme extracted from watermelon seeds.” In Proc., IFCEE 2018, 115–124. Reston, VA: ASCE.
Jiang, N. J., K. Soga, and M. Kuo. 2016. “Microbially induced carbonate precipitation (MICP) for seepage-induced internal erosion control in sand-clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Joer, H. A., M. F. Randolph, and U. Gunasena. 1998. “Experimental modeling of the shaft capacity of grouted driven piles.” Geotech. Test. J. 21 (3): 159–168. https://doi.org/10.1520/GTJ10889J.
Kavazanjian, E., E. Iglesias, and I. Karatas. 2009. “Biopolymer soil stabilization for wind erosion control.” In Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, 881–884. London: International Society for Soil Mechanics and Geotechnical Engineering.
Keykha, H. A., H. Mohamadzadeh, A. Asadi, and S. Kawasaki. 2018. “Ammonium-free carbonate-producing bacteria as an ecofriendly soil biostabilizer.” Geotech. Test. J. 42 (1): 19–29. https://doi.org/10.1520/GTJ20170353.
Khodadadi, T. H., E. Kavazanjian, and H. Bilsel. 2017. “Mineralogy of calcium carbonate in MICP-treated soil using soaking and injection treatment methods.” In Proc., Geotechnical Frontiers 2017, 195–201. Reston, VA: ASCE.
Kralj, D., L. Brecevic, and J. Kontrec. 1997. “Vaterite growth and dissolution in aqueous solution III. Kinetics of transformation.” J. Cryst. Growth 177 (3–4): 248–257. https://doi.org/10.1016/S0022-0248(96)01128-1.
Lee, J., and J. C. Santamarina. 2005. “Bender elements: Performance and signal interpretation.” J. Geotech. Geoenviron. Eng. 131 (9): 1063–1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
Lee, M., C. M. Kolbus, A. D. Yepez, and M. G. Gomez. 2019. “Investigating ammonium by-product removal following stimulated ureolytic microbially-induced calcite precipitation.” In Proc., Geo-Congress 2019: Soil Improvement, 260–272. Reston, VA: ASCE.
Lin, H., L. Ni, M. T. Suleiman, and A. Raich. 2015. “Interaction between laterally loaded pile and surrounding soil.” J. Geotech. Geoenviron. Eng. 141 (4): 04014119. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001259.
Lin, H., M. T. Suleiman, and D. G. Brown. 2020. “Investigation of pore-scale CaCO3 distributions and their effects on stiffness and permeability of sands treated by microbially induced carbonate precipitation (MICP).” Soils Found. 60 (4): 944–961. https://doi.org/10.1016/j.sandf.2020.07.003.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian. 2016a. “Mechanical behavior of sands treated by microbially induced carbonate precipitation (MICP).” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Lin, H., M. T. Suleiman, H. M. Jabbour, and D. G. Brown. 2018. “Bio-grouting to enhance the axial pull-out response of pervious concrete ground improvement piles.” Can. Geotech. J. 55 (1): 119–130. https://doi.org/10.1139/cgj-2016-0438.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian. 2016b. “Enhancing the axial compression response of pervious concrete ground improvement piles using bio-grouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Loehr, J. E., A. Marinucci, P. H. Duffy, H. Robinson, T. Day, A. Boeckmann, and A. Cadden. 2017. Evaluation and guidance development for post-grouted drilled shafts for highways. Washington, DC: Federal Highway Administration.
Logie, C. V. 1984. “Drilled pier foundation rehabilitation using cement grouting.” In Proc., ACI Symp. on Innovative Cement Grouting, 61–84. Detroit: American Concrete Institute.
Martin, K., T. H. Khodadadi, V. Krishnan, R. Adam, D. Shurley, and E. Kavazanjian. 2018. “Bench-scale bio-grouted column formation using enzyme-induced carbonate precipitation.” In Proc., Int. Conf. on Biomediated and Bioinspired Geotechnics (B2G). Atlanta: Georgia Institute of Technology.
Martinez, A., J. D. Frost, and G. L. Hebeler. 2015. “Experimental study of shear zones formed at sand/steel interfaces in axial and torsional axisymmetric tests.” Geotech. Test. J. 38 (4): 20140266. https://doi.org/10.1520/GTJ20140266.
Martinez, B. C., J. T. DeJong, T. R. Grinn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
McVay, M., D. Bloomquist, H. Forbes, and J. Johnson. 2009. Precasted concrete pile installation: Utilized jetting and pressure grouting. Tallahassee, FL: Florida DOT.
Mitchell, A. C., and F. G. Ferris. 2006. “The influence of bacillus pasteurii on the nucleation and growth of calcium carbonate.” Geomicrobiol. J. 23 (3–4): 213–226. https://doi.org/10.1080/01490450600724233.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Mullins, G., W. Danny, and D. Steven. 2006. “Predicting end bearing capacity of post-grouted drilled shaft in cohesionless soils.” J. Geotech. Geoenviron. Eng. 132 (4): 478–487. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(478).
Nafisi, A., S. Safavizadeh, and B. M. Montoya. 2019. “Influence of microbe and enzyme-induced treatments on cemented sand shear response.” J. Geotech. Geoenviron. Eng. 145 (9): 06019008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002111.
Neupane, D., H. Yasuhara, N. Kinoshita, and T. Unno. 2013. “Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique.” J. Geotech. Geoenviron. Eng. 139 (12): 2201–2211. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000959.
Ni, L., M. T. Suleiman, and A. Raich. 2016. “Behavior and soil–structure interaction of pervious concrete ground-improvement piles under lateral loading.” J. Geotech. Geoenviron. Eng. 142 (2): 04015071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001393.
O’Donnell, S. T., and E. Kavazanjian. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407).
O’Donnell, S. T., E. Kavazanjian, and B. E. Rittmann. 2017a. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. II: MICP.” J. Geotech. Geoenviron. Eng. 143 (12): 04017095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001806).
O’Donnell, S. T., B. E. Rittmann, and E. Kavazanjian. 2017b. “MIDP: Liquefaction mitigation via microbial denitrification as a two-stage process. I: Desaturation.” J. Geotech. Geoenviron. Eng. 143 (12): 04017094. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001818).
Oliveira, P. J. V., L. D. Freitas, and J. P. Carmona. 2017. “Effect of soil type on the enzymatic calcium carbonate precipitation process used for soil improvement.” J. Mater. Civ. Eng. 29 (4): 04016263. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001804).
Palmer, M. C., T. D. O’Rourke, N. A. Olson, T. Abdoun, D. Ha, and M. J. O’Rourke. 2009. “Tactile pressure sensors for soil-structure interaction assessment.” J. Geotech. Geoenviron. Eng. 135 (11): 1638–1645. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000143.
Plumbridge, G. D., and S. J. Hill. 2001. “Performance of shaft grouted piles and barrettes.” In Proc., 14th Southeast Asian Geotechnical Conf.: Geotechnical Engineering: Meeting Society’s Needs, 407–412. Rotterdam, Netherlands: A.A. Balkema.
Putra, H., H. Yasuhara, and N. Kinoshita. 2017a. “Applicability of natural zeolite for NH-forms removal in enzyme-mediated calcite precipitation technique.” Geosciences 7 (3): 61. https://doi.org/10.3390/geosciences7030061.
Putra, H., H. Yasuhara, N. Kinoshita, and A. Hirata. 2017b. “Optimization of enzyme-mediated calcite precipitation as a soil-improvement technique: The effect of aragonite and gypsum on the mechanical properties of treated sand.” Crystals 7 (2): 59. https://doi.org/10.3390/cryst7020059.
Robertson, P. K. 2010. “Evaluation of flow liquefaction and liquefied strength using the cone penetration test.” J. Geotech. Geoenviron. Eng. 136 (6): 842–853. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000286.
Ruiz, M., and M. Pando. 2009. “Load transfer mechanisms of tip post-grouted drilled shafts in sand.” In Contemporary topics in deep foundations, 23–30. Reston, VA: ASCE.
Safavizadeh, S., B. M. Montoya, and M. Gabr. 2019. “Microbial induced calcium carbonate precipitation in coal ash.” Géotechnique 69 (8): 1–14. https://doi.org/10.1680/jgeot.18.P.062.
Seed, H. B., I. M. Idriss, and I. Arango. 1983. “Evaluation of liquefaction potential using field performance data.” J. Geotech. Eng. 109 (2): 458–482. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:3(458).
Stocks-Fischer, S., J. K. Galinat, and S. S. Bang. 1999. “Microbiological precipitation of CaCO3.” Soil Biol. Biochem. 31 (11): 1563–1571. https://doi.org/10.1016/S0038-0717(99)00082-6.
Suleiman, M. T., L. Ni, C. Davis, H. Lin, and S. Xiao. 2016. “Installation effects of controlled modulus column ground improvement piles on surrounding soil.” J. Geotech. Geoenviron. Eng. 142 (1): 04015059. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001384).
Suleiman, M. T., L. Ni, J. Helm, and A. Raich. 2014a. “Soil-pile interaction for a small diameter pile embedded in granular soil subjected to passive loading.” J. Geotech. Geoenviron. Eng. 140 (5): 04014002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001081.
Suleiman, M. T., L. Ni, and A. Raich. 2014b. “Development of pervious concrete pile ground-improvement alternative and behavior under vertical loading.” J. Geotech. Geoenviron. Eng. 140 (7): 04014035. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001135.
Suleiman, M. T., L. Ni, A. Raich, J. Helm, and E. Ghazanfari. 2015. “Measured soil-pile interaction for concrete pile subjected to lateral loading.” Can. Geotech. J. 52 (8): 1168–1179. https://doi.org/10.1139/cgj-2014-0197.
Terzis, D., and L. Laloui. 2018. “3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation.” Sci. Rep. 8 (1): 1416. https://doi.org/10.1038/s41598-018-19895-w).
Thiyyakkandi, S., M. McVay, D. Bloomquist, and P. Lai. 2013. “Measured and predicted response of a new jetted and grouted precast pile with membranes in cohesionless soils.” J. Geotech. Geoenviron. Eng. 139 (8): 1334–1345. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000860.
Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi. 2018. “Effect of surface roughness on the shaft resistance of displacement model piles in sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828).
Uesugi, M., H. Kishida, and Y. Tsubakihara. 1988. “Behavior of sand particles in sand-steel friction.” Soils Found. 28 (1): 107–118. https://doi.org/10.3208/sandf1972.28.107.
van der Ruyt, M., and W. van der Zon. 2009. “Biological in situ reinforcement of sand in near-shore areas.” Proc. ICE Geotech. Eng. 162 (1): 81–83. https://doi.org/10.1680/geng.2009.162.1.81.
van Paassen, L., C. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L., R. Ghose, T. van der Linden, W. van der Star, and M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
van Paassen L. A. 2009. “Biogrout ground improvement by microbially induced carbonate precipitation.” Ph.D. thesis, Dept. of Geotechnology, Delft Univ. of Technology.
van Paassen, L. A., M. C. M. van Loosdrecht, M. Pieron, A. Mulder, D. J. M. Ngan-Tillard, and T. J. M. van der Linden. 2012. “Strength and deformation of biologically cemented sandstone.” In Rock engineering in difficult ground conditions, soft rocks and karst, 405–410. London: Taylor & Francis.
Wang, Y., K. Soga, J. T. DeJong, and A. J. Kabla. 2019. “Microscale visualization of microbial-induced calcium carbonate precipitation processes.” J. Geotech. Geoenviron. Eng. 145 (9): 04019045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002079).
Wang, Y. H., and S. C. Leung. 2008. “Characterization of cemented sand by experimental and numerical investigations.” J. Geotech. Geoenviron. Eng. 134 (7): 992–1004. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:7(992).
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Wu, S., B. Li, and J. Chu. 2019. “Large scale model tests of biogrouting for sand and rock.” In Proc., Institution of Civil Engineers-Ground Improvement, 1–30. London: Institution of Civil Engineers. https://doi.org/10.1680/jgrim.18.00074.
Yasuhara, H., D. Neupane, K. Hayashi, and M. Okamura. 2012. “Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation.” Soils Found. 52 (3): 539–549. https://doi.org/10.1016/j.sandf.2012.05.011.
Youd, T. L., D. W. DeDen, J. D. Bray, R. Sancio, K. O. Cetin, and T. M. Gerber. 2009. “Zero-displacement lateral spreads, 1999 Kocaeli, Turkey, earthquake.” J. Geotech. Geoenviron. Eng. 135 (1): 46–61. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(46).
Yun, T. S., and J. C. Santamarina. 2005. “Decementation, softening, and collapse: Changes in small-strain shear stiffness in K0 loading.” J. Geotech. Geoenviron. Eng. 131 (3): 350–358. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:3(350).
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120 (May): 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zhang, G., D. Liang, and J. M. Zhang. 2006. “Image analysis measurement of soil particle movement during a soil–structure interface test.” Comput. Geotech. 33 (4–5): 248–259. https://doi.org/10.1016/j.compgeo.2006.05.003.
Zhao, Z., N. Hamdan, L. Shen, H. Nan, A. Almajed, E. Kavazanjian, and X. He. 2016. “Biomimetic hydrogel composites for soil stabilization and contaminant mitigation.” Environ. Sci. Technol. 50 (22): 12401–12410. https://doi.org/10.1021/acs.est.6b01285.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 8August 2021

History

Received: Jun 2, 2020
Accepted: Mar 18, 2021
Published online: May 24, 2021
Published in print: Aug 1, 2021
Discussion open until: Oct 24, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., 3255 Patrick F. Taylor Hall, Baton Rouge, LA 70803 (corresponding author). ORCID: https://orcid.org/0000-0002-1641-4588. Email: [email protected]
Sean T. O’Donnell, A.M.ASCE [email protected]
Engineer, Geosyntec Consultants, 10211 Wincopin Circle, Columbia, MD 21044. Email: [email protected]
Muhannad T. Suleiman, M.ASCE [email protected]
Associate Professor, Dept. of Civil and Environmental Engineering, Lehigh Univ., 326 STEPs Bldg., 1 W Packer Ave., Bethlehem, PA 18015. Email: [email protected]
Edward Kavazanjian Jr., Dist.M.ASCE https://orcid.org/0000-0003-4557-5249 [email protected]
Ira A. Fulton Professor of Geotechnical Engineering, School of Sustainable Engineering and the Built Environment, Arizona State Univ., P.O. Box 873005, Tempe, AZ 85281-3005. ORCID: https://orcid.org/0000-0003-4557-5249. Email: [email protected]
Professor, Dept. of Civil and Environmental Engineering, Lehigh Univ., 346 STEPs Bldg., 1 W Packer Ave., Bethlehem, PA 18015. ORCID: https://orcid.org/0000-0001-7311-3135. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Strength Behavior of Temperature-Dependent MICP-Treated Soil, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11526, 149, 12, (2023).
  • Cementation Stress Characteristic Curve for Sands Treated by Microbially Induced Carbonate Precipitation, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11403, 149, 12, (2023).
  • Mechanical Behavior and Biogeochemical Reactions of a Fine-Grained Soil Treated by Microbially Induced Carbonate Precipitation, Journal of Materials in Civil Engineering, 10.1061/(ASCE)MT.1943-5533.0004687, 35, 4, (2023).
  • Experimental study on the calcium carbonate production rates and crystal size of EICP under multi-factor coupling, Case Studies in Construction Materials, 10.1016/j.cscm.2022.e01802, 18, (e01802), (2023).
  • Soil Water Retention Curve and Hydraulic Conductivity of Fungi-Treated Sand, Geo-Congress 2022, 10.1061/9780784484012.063, (624-634), (2022).
  • Discrete element modeling of shear wave propagation in carbonate precipitate–cemented particles, Acta Geotechnica, 10.1007/s11440-022-01456-1, 17, 7, (2633-2649), (2022).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share