Technical Papers
Jun 2, 2021

Impact of Roots on Hydrogeological Parameters Supporting the Performance of a Cover with Capillary Barrier Effects

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 147, Issue 8

Abstract

One of the main environmental risks related to the surface storage of reactive mine tailings is acid mine drainage (AMD). AMD generation is often managed by limiting oxygen access to the reactive tailings. To do so, engineered cover systems such as covers with a capillary barrier effect (CCBEs) can be used. Over time, plants may colonize CCBE materials as a result of natural or assisted processes. Plant roots can have an impact on the hydrogeological properties that govern the performance of a CCBE, including saturated hydraulic conductivity (ksat) and water retention curves (WRCs). In the present work, flexible wall permeameters and water retention tests were used to characterize the moisture-retaining layer (MRL) of a CCBE colonized by roots. The obtained hydrogeological properties were compared with root colonization measurements using two-dimensional (2D) and three-dimensional (3D) root trait analysis techniques. Results showed that coarser root (diameter >0.5  mm) length density had a positive linear correlation with ksat(R2=0.90) and that, as total root length density (RLD) increased, air entry values dropped (R2=0.70). Desorption rates were also shown to decrease with increasing RLD. Although these results suggest that the hydrogeological properties of the studied MRL were not significantly affected by roots seventeen years after construction, they also suggest that, with time, roots could eventually have a negative impact on a CCBE’s performance, and that further research is needed.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

The authors thank the industrial partners of the Research Institute on Mines and the Environment (RIME UQAT-Polytechnique; www.RIME-IRME.ca) for providing funding for this project. The authors also acknowledge the financial support of the Fonds de Recherche du Québec sur la Nature et les Technologies (FRQNT): sustainable development of the mining sector program. Finally, the authors thank the Ministère de l’Énergie et des Ressources naturelles du Québec for granting access to the Lorraine mine site. The authors would like to thank also the Unité de recherche et service en technologie minérale (URSTM staff) and Gary Schudel for his help with the manuscript.

References

Angers, D. A., and J. Caron. 1998. “Plant-induced changes in soil structure: Processes and feedbacks.” Biogeochemistry 42 (1–2): 55–72. https://doi.org/10.1023/A:1005944025343.
Archer, N. A. L., J. N. Quinton, and T. M. Hess. 2002. “Below-ground relationships of soil texture, roots and hydraulic conductivity in two-phase mosaic vegetation in South-east Spain.” J. Arid. Environ. 52 (4): 535–553. https://doi.org/10.1006/jare.2002.1011.
ASTM. 2002. Standard test methods for determination of the soil water chararcteristic curve for desorption using a hanging column, pressure extractor, chilled mirror hygrometer, and/or centrifuge. ASTM D6836-02. West Conshohocken, PA: ASTM.
ASTM. 2010. Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM D5084-10. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487-17e1. West Conshohocken, PA: ASTM.
Aubertin, M., M. Aachib, M. Monzon, A. M. Joanes, B. Bussière, and R. P. Chapuis. 1997. Étude en laboratoire sur l’efficacité des barrières de recouvrement construites à partir de résidus miniers. Ottawa: Canada Centre for Mineral and Energy Technology (CANMET). CD-ROM.
Aubertin, M., B. Bussière, M. Monzon, A.-M. Joanes, D. Gagnon, J.-M. Barbera, M. Aachib, C. Bédard, R. P. Chapuis, and L. Bernier. 1999. Étude sur les barrières sèches construites à partir des résidus miniers. Phase II—Essais en place. Ottawa: Canada Centre for Mineral and Energy Technology (CANMET). CD-ROM.
Aubertin, M., B. Bussière, T. Pabst, M. James, and M. Mbonimpa. 2016. “Review of the reclamation techniques for acid-generating mine wastes upon closure of disposal sites.” In Proc., Geo-Chicago 2016, 343–358. Reston, VA: ASCE.
Aubertin, M., R. P. Chapuis, M. Aachib, B. Bussière, J. F. Ricard, and L. Tremblay. 1995. Évaluation en laboratoire de barrières sèches construites à partir de résidus miniers. Ottawa: Canada Centre for Mineral and Energy Technology (CANMET). CD-ROM.
Awoh, A. S., M. Mbonimpa, and B. Bussière. 2013. “Field study of the chemical and physical stability of highly sulphide-rich tailings stored under a shallow water cover.” Mine Water Environ. 32 (1): 42–55. https://doi.org/10.1007/s10230-012-0213-5.
Benson, C., W. Albright, D. Fratta, J. Tinjum, E. Kucukkirca, S. Lee, J. Scalia, P. Schlicht, and X. Wang. 2011. Engineered covers for waste containment: Changes in engineering properties & implications for long-term performance assessment. Washington, DC: Office of Research, US Nuclear Regulatory Commission.
Benson, C. H., A. Sawangsuriya, B. Trzebiatowski, and W. H. Albright. 2007. “Postconstruction changes in the hydraulic properties of water balance cover soils.” J. Geotech. Geoenviron. Eng. 133 (4): 349–359. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(349).
Beven, K., and P. Germann. 2013. “Macropores and water flow in soils revisited.” Water Resour. Res. 49 (6): 3071–3092. https://doi.org/10.1002/wrcr.20156.
Blowes, D. W., C. J. Ptacek, and J. Jurjovec. 2003. “Mill tailings: Hydrogeology and geochemistry.” Chap. 5 in Vol. 31 of Environmental aspects of mine wastes, edited by J. L. Jambor, D. W. Blowes, and A. I. M. Ritchie, 95–116. Ottawa: Mineralogical Association of Canada.
Bodner, G., D. Leitner, and H.-P. Kaul. 2014. “Coarse and fine root plants affect pore size distributions differently.” Plant Soil 380 (1): 133–151. https://doi.org/10.1007/s11104-014-2079-8.
Burger, C. A., and C. D. Shackelford. 2001. “Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil-water characteristic curve functions.” Can. Geotech. J. 38 (1): 53–66. https://doi.org/10.1139/t00-084.
Bussière, B., M. Aubertin, and R. P. Chapuis. 2003. “The behavior of inclined covers used as oxygen barriers.” Can. Geotech. J. 40 (3): 512–535. https://doi.org/10.1139/t03-001.
Bussière, B., A. Maqsoud, M. Aubertin, J. Martschuk, J. McMullen, and M. Julien. 2006. “Performance of the oxygen limiting cover at the LTA site, Malartic, Quebec.” CIM Bull. 1 (6): 1–11.
Bussière, B., R. Potvin, A.-M. Dagenais, M. Aubertin, A. Maqsoud, and J. Cyr. 2009. “Restauration du site minier Lorraine, Latulipe, Québec: Résultats de 10 ans de suivi.” Rev. Déchets Sci. Tech. 54 (2): 49–64.
Dagenais, A.-M., M. Aubertin, B. Bussière, L. Bernier, and J. Cyr. 2001. “Monitoring at the Lorraine mine site: A follow-up on the remediation plan.” In Proc., National Association of Abandoned Mine Land Programs Annual Conf., 1–19. Cheyenne, Wyoming: National Association of Abandoned Mine Land Programs.
Dagenais, A.-M., M. Aubertin, B. Bussière, and J. Cyr. 2005. “Performance of the Lorraine mine site cover to limit oxygen migration.” In Proc., SME Annual Meeting, (CD-Rom). Englewood, CO: Society for Mining, Metallurgy, & Exploration.
Dejong, J., M. Tibbett, and A. Fourie. 2015. “Geotechnical systems that evolve with ecological processes.” Environ. Earth Sci. 73 (3): 1067–1082. https://doi.org/10.1007/s12665-014-3460-x.
Delage, P., M. D. Howat, and Y. J. Cui. 1998. “The relationship between suction and swelling properties in a heavily compacted unsaturated clay.” Eng. Geol. 50 (1–2): 31–48. https://doi.org/10.1016/S0013-7952(97)00083-5.
Demers, I., B. Bussière, M. Benzaazoua, M. Mbonimpa, and A. Blier. 2008. “Column test investigation on the performance of monolayer covers made of desulphurized tailings to prevent acid mine drainage.” Miner. Eng. 21 (4): 317–329. https://doi.org/10.1016/j.mineng.2007.11.006.
Demers, I., B. Bussière, M. Mbnimpa, and M. Benzaazoua. 2009. “Oxygen diffusion and consumption in low-sulphide tailings covers.” Can. Geotech. J. 46 (4): 454–469. https://doi.org/10.1139/T08-132.
Ebel, B. A. 2012. “Wildfire impacts on soil-water retention in the Colorado Front Range, United States.” Water Resour. Res. 48 (12): W12515. https://doi.org/10.1029/2012WR012362.
Ethier, M. P., B. Bussière, S. Broda, and M. Aubertin. 2018. “Three-dimensional hydrogeological modeling to assess the elevated-water-table technique for controlling acid generation from an abandoned tailings site in Quebec, Canada.” Hydrogeol. J. 26 (4): 1201–1219. https://doi.org/10.1007/s10040-017-1713-y.
Fredlund, D. G., M. D. Fredlund, and H. Rahardjo. 2012. Unsaturated soil mechanics in engineering practice. Hoboken, NJ: Wiley.
Gao, Z., F. Niu, Y. Wang, Z. Lin, J. Luo, and M. Liu. 2018. “Root-induced changes to soil water retention in permafrost regions of the Quinghai-Tibet Plateau, China.” J. Soils Sediments 18 (3): 791–803. https://doi.org/10.1007/s11368-017-1815-0.
Genty, T., B. Bussière, M. Paradie, and C. M. Neculita. 2016. “Passive biochemical treatment of ferriferous mine drainage: Lorraine mine site, Northern Québec, Canada.” In Proc., Int. Mine Water Association (IMWA) Conf., 790–795. Bavaria, Germany: International Mine Water Association.
Ghestem, M., R. C. Sidle, and A. Stokes. 2011. “The influence of plant root systems on subsurface flow: Implications for slope stability.” Bioscience 61 (11): 869–879. https://doi.org/10.1525/bio.2011.61.11.6.
Glinski, J., and J. Lipiec. 2018. Soil physical conditions and plant roots. Boca Raton, FL: CRC Press.
Government of Canada. 2016. “Mean climatic data from 1981 to 2010 for Ville-Marie station.” Accessed August 14, 2017. http://climat.meteo.gc.ca/climate_normals/results_1981_2010_f.html?stnID=6002&lang=f&province=QC&provSubmit=go&page=151&dCode=0.
Guittonny-Larchevêque, M., A. Beaulieu, A. Proteau, B. Bussière, and A. Maqsoud. 2016a. Vegetation management on tailings impoundments reclaimed with covers with capillary barrier effects. In Proc., 5th I2SM. Beijing: World Association for Sedimentation and Erosion Research.
Guittonny-Larchevêque, M., B. Bussière, and C. Pednault. 2016b. “Tree–substrate water relations and root development in tree plantations used for mine tailings reclamation.” J. Environ. Qual. 45 (3): 1036–1045.
Guittonny-Larchevêque, M., and S. Lortie. 2017. “Above-and belowground development of a fast-growing willow planted in acid-generating mine Technosol.” J. Environ. Qual. 46 (6): 1462–1471. https://doi.org/10.2134/jeq2017.03.0128.
Hillel, D. 1998. Environmental soil physics. San Diego: Academic Press.
Hu, X., X.-Y. Li, Z.-C. Li, Z. Gao, X.-C. Wo, P. Wang, Y.-L. Lyu, and L.-Y. Liu. 2020. “Linking 3-D soil macropores and root architecture to near saturated hydraulic conductivity of typical meadow soil types in the Qinghai Lake Watershed, northeastern Qinghai–Tibet Plateau.” Catena 185 (Feb): 104287. https://doi.org/10.1016/j.catena.2019.104287.
Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala, and E. D. Schulze. 1996. “A global analysis of root distributions for terrestrial biomes.” Oecologia 108 (3): 389–411. https://doi.org/10.1007/BF00333714.
Jassogne, L., A. McNeill, and D. Chittleborough. 2007. “3D-visualization and analysis of macro-and meso-porosity of the upper horizons of a sodic, texture-contrast soil.” Eur. J. Soil Sci. 58 (3): 589–598. https://doi.org/10.1111/j.1365-2389.2006.00849.x.
Johnson, D. B., and K. B. Hallberg. 2005. “Acid mine drainage remediation options: A review.” Sci. Total Environ. 338 (1–2): 3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002.
Jotisankasa, A., and T. Sirirattanachat. 2017. “Effects of grass roots on soil-water retention curve and permeability function.” Can. Geotech. J. 54 (11): 1612–1622. https://doi.org/10.1139/cgj-2016-0281.
Kleinmann, R. L. P. 1990. “At-source control of acid mine drainage.” Int. J. Mine Water 9 (1–4): 85–96. https://doi.org/10.1007/BF02503685.
Lambers, H., F. S. Chapin, and T. L. Pons. 2008. “Plant physiological ecology.” Accessed August 28, 2018. http://link.springer.com/10.1007/978-0-387-78341-3.
Leung, A. K., A. Garg, J. L. Coo, C. W. W. Ng, and B. C. H. Hau. 2015a. “Effects of the roots of Cynodon dactylon and Schefflera heptaphylla on water infiltration rate and soil hydraulic conductivity.” Hydrol. Processes 29 (15): 3342–3354. https://doi.org/10.1002/hyp.10452.
Leung, A. K., A. Garg, and C. W. W. Ng. 2015b. “Effects of plant roots on soil-water retention and induced suction in vegetated soil.” Eng. Geol. 193 (Jul): 183–197. https://doi.org/10.1016/j.enggeo.2015.04.017.
Lu, J., Q. Zhang, A. D. Werner, Y. Li, S. Jiang, and Z. Tan. 2020. “Root-induced changes of soil hydraulic properties—A review.” J. Hydrol. 589 (Oct): 125203. https://doi.org/10.1016/j.jhydrol.2020.125203.
Lucas, M., S. Schlüter, H.-J. Vogel, and D. Vetterlein. 2019. “Roots compact the surrounding soil depending on the structures they encounter.” Sci. Rep. 9 (1): 1–13.
Mairhofer, S., S. Zappala, S. R. Tracy, C. Sturrock, M. Bennett, S. J. Mooney, and T. Pridmore. 2012. “RooTrak: Automated recovery of three-dimensional plant root architecture in soil from x-ray microcomputed tomography images using visual tracking.” Plant Physiol. 158 (2): 561–569. https://doi.org/10.1104/pp.111.186221.
Maqsoud, A., B. Bussiere, M. Aubertin, M. Chouteau, and M. Mbonimpa. 2011. “Field investigation of a suction break designed to control slope-induced desaturation in an oxygen barrier.” Can. Geotech. J. 48 (1): 53–71. https://doi.org/10.1139/T10-045.
Mbonimpa, M., M. Aubertin, M. Aachib, and B. Bussière. 2003. “Diffusion and consumption of oxygen in unsaturated cover materials.” Can. Geotech. J. 40 (5): 916–932. https://doi.org/10.1139/t03-040.
Mbonimpa, M., M. Aubertin, R. P. Chapuis, and B. Bussière. 2002. “Pratical pedotransfer functions for estimating the saturated hydraulic conductivity.” Geotech. Geol. Eng. 20 (3): 235–259. https://doi.org/10.1023/A:1016046214724.
MEND (Mine Environment Neutral Drainage). 1996. Review of use of an elevated water table as a method to control and reduce acidic drainage from tailings. Richmond Hill, ON: MEND.
MFFP (Ministère des Forêts, de la Faune et des Parcs). 2016. “Zones de végétation et domaines bioclimatiques du Québec.” Gouvernement du Québec. Accessed August 14, 2017. https://mffp.gouv.qc.ca/forets/inventaire/inventaire-zones-carte.jsp.
Mishra, H. S., T. R. Rathore, and V. S. Tomar. 1999. “Root growth, water potential and yield of irrigated wheat.” Irrig. Sci. 18 (3): 117–123.
Mooney, S. J., T. P. Pridmore, J. Helliwell, and M. J. Bennett. 2012. “Developing X-ray computed tomography to non-invasively image 3-D root systems architecture in soil.” Plant Soil 352 (1): 1–22. https://doi.org/10.1007/s11104-011-1039-9.
Morel-Seytoux, H. J. 1992. “L’effet de barrière capillaire à l’interface de deux couches de sol aux propriétés fort contrastées.” Hydrol. Continentale 7 (2): 117–128.
Morel-Seytoux, H. J., P. D. Meyer, M. Nachabe, J. Tourna, M. T. Van Genuchten, and R. J. Lenhard. 1996. “Parameter equivalence for the Brooks-Corey and van Genuchten soil characteristics: Preserving the effective capillary drive.” Water Resour. Res. 32 (5): 1251–1258.
Nastev, M., and M. Aubertin. 2000. “Hydrogeological modelling for the reclamation work at the Lorraine Mine Site, Québec.” In Proc., of the 1st Joint IAH-CNC and CGS Groundwater Specialty Conf. Montreal. Richmond, BC: Canadian Geotechnical Society.
Ng, C. W. W., J. J. Ni, A. K. Leung, and Z. J. Wang. 2016. “A new and simple water retention model for root-permeated soils.” Géotech. Lett. 6 (1): 106–111. https://doi.org/10.1680/jgele.15.00187.
Ni, J. J., A. K. Leung, and C. W. W. Ng. 2019. “Modelling effects of root growth and decay on soil water retention and permeability.” Can. Geotech. J. 56 (7): 1049–1055. https://doi.org/10.1139/cgj-2018-0402.
Ni, J. J., and C. W. W. Ng. 2019. “Long-term effects of grass roots on gas permeability in unsaturated simulated landfill covers.” Sci. Total Environ. 666 (May): 680–684. https://doi.org/10.1016/j.scitotenv.2019.02.248.
Nicholson, R. V., R. W. Gillham, J. A. Cherry, and E. J. Reardon. 1989. “Reduction of acid generation in mine tailings through the use of moisture-retaining cover layers as oxygen barriers.” Can. Geotech. J. 26 (1): 1–8. https://doi.org/10.1139/t89-001.
Novák, V., L’. Lichner, B. Zhang, and K. Kňava. 2009. “The impact of heating on the hydraulic properties of soils sampled under different plant cover.” Biologia 64 (3): 483–486. https://doi.org/10.2478/s11756-009-0099-2.
Ouangrawa, M., J. Molson, M. Aubertin, G. Zagury, and B. Bussière. 2006. “The effect of water table elevation on acid mine drainage from reactive tailings: A laboratory and numerical modeling study.” In Proc., 7th Int. Conf. on Acid Rock Drainage (ICARD). Lexington, UK: American Society of Mining and Reclamation.
Pagenkemper, S. K., M. Athmann, D. Uteau, T. Kautz, S. Peth, and R. Horn. 2015. “The effect of earthworm activity on soil bioporosity—Investigated with x-ray computed tomography and endoscopy.” Soil Tillage Res. 146 (Mar): 79–88. https://doi.org/10.1016/j.still.2014.05.007.
Proteau, A., M. Guittonny, B. Bussière, and A. Maqsoud. 2020a. “Oxygen migration through a cover with capillary barrier effects colonized by roots.” Can. Geotech. J. 57 (12): 1903–1914. https://doi.org/10.1139/cgj-2019-0515.
Proteau, A., M. Guittonny, B. Bussière, and A. Maqsoud. 2020b. “Aboveground and belowground colonization of vegetation on a 17-year-old cover with capillary barrier effect built on a boreal mine tailings storage facility.” Minerals 10 (8): 704. https://doi.org/10.3390/min10080704.
Quang, N. D., and J. C. Chai. 2015. “Permeability of lime- and cement-treated clayey soils.” Can. Geotech. J. 52 (9): 1221–1227. https://doi.org/10.1139/cgj-2014-0134.
Rahardjo, H., A. Satyanaga, E. C. Leong, V. A. Santoso, and Y. S. Ng. 2014. “Performance of an instrumented slope covered with shrubs and deep rooted grass.” Soils Found. 54 (3): 417–425. https://doi.org/10.1016/j.sandf.2014.04.010.
Romero, E., A. Gens, and A. Lloret. 2001. “Temperature effects on the hydraulic behaviour of an unsaturated clay.” In Unsaturated soil concepts and their application in geotechnical practice, 311–332. Dordrecht: Springer.
Saiyouri, N., P. Y. Hicher, and D. Tessier. 2000. “Microstructural approach and transfer water modelling in highly compacted unsaturated swelling clays.” Mech. Cohesive-frict. Mater. Int. J. Exp. Model. Comput. Mater. Struct. 5 (1): 41–60.
Schwintzer, C. R., and S. A. Lancelle. 1983. “Effect of water-table depth on shoot growth, root growth, and nodulation of Myrica gale seedlings.” J. Ecol. 71: 489–501.
Shao, W., J. Ni, K. L. Leung, Y. Su, and C. W. W. Ng. 2017. “Analysis of plant rood-induced preferential flow and pore-water pressure variation by a dual-permeability model.” Can. Geotech. J. 54 (11): 1537–1552. https://doi.org/10.1139/cgj-2016-0629.
Smirnova, E., B. Bussière, F. Tremblay, and Y. Bergeron. 2011. “Vegetation succession and impacts of biointrusion on covers used to limit acid mine drainage.” J. Environ. Qual. 40 (1): 133–143. https://doi.org/10.2134/jeq2010.0051.
Strong, W. L., and G. H. La Roi. 1983. “Root-system morphology of common boreal forest trees in Alberta, Canada.” Can. J. For. Res. 13 (6): 1164–1173. https://doi.org/10.1139/x83-155.
Tarantino, A., E. Romero, and Y. J. Cui, eds. 2009. Laboratory and field testing of unsaturated soils, 220. Amsterdam, Netherlands: Springer.
Tordoff, G. M., A. J. M. Baker, and A. J. Willis. 2000. “Current approaches to the revegetation and reclamation of metalliferous mine wastes.” Chemosphere 41 (1–2): 219–228. https://doi.org/10.1016/S0045-6535(99)00414-2.
Tracy, S. R., J. A. Roberts, C. R. Black, A. McNeill, R. Davidson, and S. J. Mooney. 2010. “The x-factor: Visualizing undisturbed root architecture in soils using x-ray computed tomography.” J. Exp. Bot. 61 (2): 311–313. https://doi.org/10.1093/jxb/erp386.
Van Genuchten, M. T. 1980. “A closed-form equation for predicting the hydraulic conductivity of unsaturated soils.” Soil Sci. Soc. Am. J. 44 (5): 892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x.
Van Genuchten, M. T., F. J. Leij, and S. R. Yates. 1991. The RETC code for quantifying the hydraulic functions of unsaturated soils. Riverside, CA: US Salinity Laboratory, USDA.
Watabe, Y., S. Leroueil, and J.-P. Le Bihan. 2000. “Influence of compaction conditions on pore-size distribution and saturated hydraulic conductivity of a glacial till.” Can. Geotech. J. 37 (6): 1184–1194. https://doi.org/10.1139/t00-053.
Yanful, E. K., A. V. Bell, and M. Woyshner. 1993a. “Design of a composite soil cover for an experimental waste rock pile near Newcastle, New Brunswick, Canada.” Can. Geotech. J. 30 (4): 578–587. https://doi.org/10.1139/t93-050.
Yanful, E. K., M. D. Riley, M. R. Woyshner, and J. Duncan. 1993b. “Construction and monitoring of a composite soil cover on an experimental waste rock pile near Newcastle, New Brunswick, Canada.” Can. Geotech. J. 30 (4): 588–599. https://doi.org/10.1139/t93-051.
Yanful, E. K., P. H. Simms, and S. C. Payant. 1999. “Soil covers for controlling acid generation in mine tailings: A laboratory evaluation of the physics and geochemistry.” Water Air Soil Pollut. 114 (3): 347–375. https://doi.org/10.1023/A:1005187613503.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 147Issue 8August 2021

History

Received: May 12, 2020
Accepted: Mar 16, 2021
Published online: Jun 2, 2021
Published in print: Aug 1, 2021
Discussion open until: Nov 2, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Alex Proteau [email protected]
Ph.D. Candidate, RIME–Research Institute on Mines and the Environment, Université du Québec en Abitibi-Témiscamingue, 675, 1re Ave., Val-d’Or, QC, Canada J9P 1Y3 (corresponding author). Email: [email protected]
Marie Guittonny
Professor, RIME–Research Institute on Mines and the Environment, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC, Canada J9X 5E4.
Bruno Bussière
Scientific Director, RIME–Research Institute on Mines and the Environment, Université du Québec en Abitibi-Témiscamingue, 445 boul. de l’Université, Rouyn-Noranda, QC, Canada J9X 5E4.
Abdelkabir Maqsoud
Professor, RIME–Research Institute on Mines and the Environment, Université du Québec en Abitibi-Témiscamingue, 675, 1re Ave., Val-d’Or, QC, Canada J9P 1Y3.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Field Hydrology of Armored Earthen Final Covers with and without Vegetation, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11110, 150, 1, (2024).
  • Effects of hydrogen sulfide on grass traits and water-gas transport in grass-planted unsaturated soil, Géotechnique, 10.1680/jgeot.21.00337, (1-17), (2023).
  • Effects of Pore-Size Distribution on the Gas Diffusion Coefficient and Gas Permeability of Compacted Manufactured Sand Tailing–Bentonite Mixtures, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-11303, 149, 11, (2023).
  • A New Method and Instrument for Measuring In Situ Gas Diffusion Coefficient and Gas Coefficient of Permeability of Unsaturated Soil, Journal of Geotechnical and Geoenvironmental Engineering, 10.1061/JGGEFK.GTENG-10871, 149, 7, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share