Abstract

This technical paper investigates the bearing performance of precast concrete piles embedded within calcareous sands with biogrouting at the pile toe. Loading tests of biogrout-improved and unimproved concrete model piles were conducted to evaluate the performance of biogrout to enhance the toe bearing capacity of precast concrete piles. The total bearing capacity of the precast concrete pile with a biogrouted toe was 4.4 times as large as that without biogrout. A series of index tests were performed using a penetrometer to estimate the spatial distribution of strength of biocemented sands below the pile toe. It was found that the average strength of the biocemented sand below the biogrouted pile toe gradually decreased with increasing vertical distance or lateral distance from the pile toe. The novel application of biocement to treat bearing sands following pile installation represents a promising method to increase pile capacity.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

The authors would like to acknowledge the financial support from the National Science Foundation of China (Grant Nos. 41831282, 51922024, 51678094, and 51578096). TME was supported by the U.S. National Science Foundation (Grant No. CMMI-1933355) during this work. This support is gratefully acknowledged.

References

Al Qabany, A., and K. Soga. 2013. “Effect of chemical treatment used in MICP on engineering properties of cemented soils.” Géotechnique 63 (4): 331–339. https://doi.org/10.1680/geot.SIP13.P.022.
Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
ASTM. 2013. Standard test methods for deep foundations under static axial compressive load. ASTM D1143/D1143M-07. West Conshohocken, PA: ASTM.
ASTM. 2016a. Standard test method for maximum index density and unit weight of soils using vibratory table. ASTM D4253-16. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254-16. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM D2487-17. West Conshohocken, PA: ASTM.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Basu, D., and R. Salgado. 2014. “Closure to ‘load and resistance factor design of drilled shafts in sand’ by D. Basu and Rodrigo Salgado.” J. Geotech. Geoenviron. Eng. 140 (3): 07014002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001055.
Belkhatir, M., A. Arab, T. Schanz, H. Missoum, and N. Della. 2011. “Laboratory study on the liquefaction resistance of sand-silt mixtures: Effect of grading characteristics.” Granular Matter 13 (5): 599–609. https://doi.org/10.1007/s10035-011-0269-0.
Briaud, J. L., M. Ballouz, and G. Nasr. 2000. “Static capacity prediction by dynamic methods for three bored piles.” J. Geotech. Geoenviron. Eng. 126 (7): 640–649. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:7(640).
Briaud, J. L., and L. M. Tucker. 1988. “Measured and predicted axial response of 98 piles.” J. Geotech. Eng. 114 (9): 984–1001. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:9(984).
Burbank, M., T. Weaver, R. Lewis, T. Williams, B. Williams, and R. Crawford. 2013. “Geotechnical tests of sands following bioinduced calcite precipitation catalyzed by indigenous bacteria.” J. Geotech. Geoenviron. Eng. 139 (6): 928–936. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000781.
Cheng, L., and R. Cord-Ruwisch. 2012. “In situ soil cementation with ureolytic bacteria by surface percolation.” Ecol. Eng. 42 (May): 64–72. https://doi.org/10.1016/j.ecoleng.2012.01.013.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., and M. A. Shahin. 2016. “Urease active bioslurry: A novel soil improvement approach based on microbially induced carbonate precipitation.” Can. Geotech. J. 53 (9): 1376–1385. https://doi.org/10.1139/cgj-2015-0635.
Cheng, L., and M. A. Shahin. 2017. “Stabilisation of oil-contaminated soils using microbially induced calcite crystals by bacterial flocs.” Geotech. Lett. 7 (2): 146–151. https://doi.org/10.1680/jgele.16.00178.
Cheng, L., M. A. Shahin, and D. Mujah. 2017. “Influence of key environmental conditions on microbially induced cementation for soil stabilization.” J. Geotech. Geoenviron. Eng. 143 (1): 04016083. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001586.
Chou, C.-W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Comodromos, E. M., C. T. Anagnostopoulos, and M. K. Georgiadis. 2003. “Numerical assessment of axial pile group response based on load test.” Comput. Geotech. 30 (6): 505–515. https://doi.org/10.1016/S0266-352X(03)00017-X.
Coop, M. R. 1990. “The mechanics of uncemented carbonate sands.” Géotechnique 40 (4): 607–626. https://doi.org/10.1680/geot.1990.40.4.607.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cui, M., J. Zheng, R. Zhang, H. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Doherty, P., G. Spagnoli, and D. Bellato. 2016. “Mixed-in-place response of two carbonate sands.” Proc. Inst. Civ. Eng. Geotech. Eng. 169 (2): 153–163. https://doi.org/10.1680/jgeen.15.00058.
Dyson, G. J., and M. F. Randolph. 2001. “Monotonic lateral loading of piles in calcareous sand.” J. Geotech. Geoenviron. Eng. 127 (4): 346–352. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(346).
Gao, Y., L. Hang, J. He, and J. Chu. 2018. “Mechanical behaviour of biocemented sands at various treatment levels and relative densities.” Acta Geotech. 14 (3): 697–707. https://doi.org/10.1007/s11440-018-0729-3.
Gavin, K., and B. Lehane. 2007. “Base load-displacement response of piles in sand.” Can. Geotech. J. 44 (9): 1053–1063. https://doi.org/10.1139/T07-048.
Gomez, M. G., C. M. R. Graddy, J. T. DeJong, and D. C. Nelson. 2019. “Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms.” Sci. Rep. 9 (1): 11517. https://doi.org/10.1038/s41598-019-47973-0.
Hammad, I. A., F. N. Talkhan, and A. E. Zoheir. 2013. “Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841.” J. Appl. Sci. Res. 9 (3): 1525–1533.
Han, F., E. Ganju, R. Salgado, and M. Prezzi. 2018. “Effects of interface roughness, particle geometry, and gradation on the sand–steel interface friction angle.” J. Geotech. Geoenviron. Eng. 144 (12): 04018096. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001990.
Han, F., E. Ganju, R. Salgado, and M. Prezzi. 2019a. “Comparison of the load response of closed-ended and open-ended pipe piles driven in gravelly sand.” Acta Geotech. 14 (6): 1785–1803. https://doi.org/10.1007/s11440-019-00863-1.
Han, F., M. Prezzi, R. Salgado, and M. Zaheer. 2017a. “Axial resistance of closed-ended steel-pipe piles driven in multilayered soil.” J. Geotech. Geoenviron. Eng. 143 (3): 04016102. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001589.
Han, F., R. Salgado, M. Prezzi, and J. Lim. 2017b. “Shaft and base resistance of non-displacement piles in sand.” Comput. Geotech. 83 (Mar): 184–197. https://doi.org/10.1016/j.compgeo.2016.11.006.
Han, F., R. Salgado, M. Prezzi, and J. Lim. 2019b. “Axial resistance of nondisplacement pile groups in sand.” J. Geotech. Geoenviron. Eng. 145 (7): 04019027. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002050.
Hyodo, M., N. Aramaki, M. Itoh, and A. F. L. Hyde. 1996. “Cyclic strength and deformation of crushable carbonate sand.” Soil Dyn. Earthquake Eng. 15 (5): 331–336. https://doi.org/10.1016/0267-7261(96)00003-6.
Ivanov, V., and J. Chu. 2008. “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Rev. Environ. Sci. Biotechnol. 7 (2): 139–153. https://doi.org/10.1007/s11157-007-9126-3.
Jiang, N.-J., and K. Soga. 2017. “The applicability of microbially induced calcite precipitation (MICP) for internal erosion control in gravel–sand mixtures.” Géotechnique 67 (1): 42–55. https://doi.org/10.1680/jgeot.15.P.182.
Jiang, N.-J., K. Soga, and M. Kuo. 2017. “Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures.” J. Geotech. Geoenviron. Eng. 143 (3): 04016100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001559.
Kim, D. H., N. Mahabadi, J. Jang, and L. A. van Paassen. 2020. “Assessing the kinetics and pore-scale characteristics of biological calcium carbonate precipitation in porous media using a microfluidic chip experiment.” Water Resour. Res. 56 (2): 1–19. https://doi.org/10.1029/2019WR025420.
Kuwajima, K., M. Hyodo, and A. F. L. Hyde. 2009. “Pile bearing capacity factors and soil crushability.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., C. D. Liggio, and J. Nam. 2009. “Strain rate, creep, and stress drop-creep experiments on crushed coral sand.” J. Geotech. Geoenviron. Eng. 135 (7): 941–953. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000067.
Lee, C. Y., and H. G. Poulos. 1988. “Effective stress dependence of pile shaft capacity in calcareous sand.” J. Geotech. Eng. 114 (10): 1189–1193. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:10(1189).
Lee, C. Y., and H. G. Poulos. 1991. “Tests on model instrumented grouted piles in offshore calcareous soil.” J. Geotech. Eng. 117 (11): 1738–1753. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:11(1738).
Lee, J. H., and R. Salgado. 1999. “Determination of pile base resistance in sands.” J. Geotech. Geoenviron. Eng. 125 (8): 673–683. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:8(673).
Lehane, B. M., J. A. Schneider, J. K. Lim, and G. Mortara. 2012. “Shaft friction from instrumented displacement piles in an uncemented calcareous sand.” J. Geotech. Geoenviron. Eng. 138 (11): 1357–1368. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000712.
Li, M., L. Li, U. Ogbonnaya, K. Wen, A. Tian, and F. Amini. 2016. “Influence of fiber addition on mechanical properties of MICP-treated sand.” J. Mater. Civ. Eng. 28 (4): 04015166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442.
Li, M., K. Wen, Y. Li, and L. Zhu. 2017. “Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment.” Geomicrobiol. J. 35 (1): 15–22. https://doi.org/10.1080/01490451.2017.1303553.
Lin, H., M. T. Suleiman, H. M. Jabbour, and D. G. Brown. 2018. “Bio-grouting to enhance axial pull-out response of pervious concrete ground improvement piles.” Can. Geotech. J. 55 (1): 119–130. https://doi.org/10.1139/cgj-2016-0438.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian Jr. 2016. “Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Mao, W., Y. Yang, W. Lin, S. Aoyama, and I. Towhata. 2018. “High frequency acoustic emissions observed during model pile penetration in sand and implications for particle breakage behavior.” Int. J. Geomech. 18 (11): 04018143. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001287.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
Meyerhof, G. G. 1977. “Bearing capacity and settlement of pile foundations.” J. Geotech. Eng. 102 (3): 197–228.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Montoya, B. M., and J. T. Dejong. 2013. “Healing of biologically induced cemented sands.” Geotech. Lett. 3 (3): 147–151. https://doi.org/10.1680/geolett.13.00044.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Montoya, B. M., S. Safavizadeh, and M. A. Gabr. 2019. “Enhancement of coal ash compressibility parameters using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 145 (5): 04019018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002036.
Mortensen, B. M., M. J. Haber, J. T. DeJong, L. F. Caslake, and D. C. Nelson. 2011. “Effects of environmental factors on microbial induced calcium carbonate precipitation.” J. Appl. Microbiol. 111 (2): 338–349. https://doi.org/10.1111/j.1365-2672.2011.05065.x.
Murff, J. D. 1987. “Pile capacity in calcareous sands: State of the art.” J. Geotech. Eng. 113 (5): 490–507. https://doi.org/10.1061/(ASCE)0733-9410(1987)113:5(490).
Nassar, M. K., D. Gurung, M. Bastani, T. R. Ginn, B. Shafei, M. G. Gomez, C. M. R. Graddy, D. C. Nelson, and J. T. DeJong. 2018. “Large-scale experiments in microbially induced calcite precipitation (MICP): Reactive transport model development and prediction.” Water Resour. Res. 54 (1): 480–500. https://doi.org/10.1002/2017WR021488.
Neely, W. J. 1991. “Bearing capacity of auger-cast piles in sand.” J. Geotech. Eng. 117 (2): 331–345. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:2(331).
Nemati, M., and G. Voordouw. 2003. “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme Microb. Technol. 33 (5): 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1.
O’Donnell, T. S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Paik, K., and R. Salgado. 2003. “Determination of bearing capacity of open-ended piles in sand.” J. Geotech. Geoenviron. Eng. 129 (1): 46–57. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:1(46).
Paik, K., R. Salgado, J. Lee, and B. Kim. 2003. “Behavior of open- and closed-ended piles driven into sands.” J. Geotech. Geoenviron. Eng. 129 (4): 296–306. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(296).
Pan, X., J. Chu, Y. Yang, and L. Cheng. 2019. “A new biogrouting method for fine to coarse sand.” Acta Geotech. 15 (1): 1–16. https://doi.org/10.1007/s11440-019-00872-0.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Randolph, M. F. 2003. “Science and empiricism in pile foundation design.” Géotechnique 53 (10): 847–875. https://doi.org/10.1680/geot.2003.53.10.847.
Rauthause, M. P., A. W. Stuedlein, and M. J. Olsen. 2020. “Quantification of surface roughness using laser scanning with application to the frictional resistance of sand-timber pile interfaces.” Geotech. Test. J. 43 (4): 966–984. https://doi.org/10.1520/GTJ20180384.
Reddy, S. C., and A. W. Stuedlein. 2017. “Ultimate limit state reliability-based design of augered cast-in-place piles considering lower-bound capacities.” Can. Geotech. J. 54 (12): 1693–1703. https://doi.org/10.1139/cgj-2016-0145.
Safavizadeh, S., B. M. Montoya, and M. A. Gabr. 2019. “Microbial induced calcium carbonate precipitation in coal ash.” Géotechnique 69 (8): 727–740. https://doi.org/10.1680/jgeot.18.P.062.
Seo, H., I. Z. Yildirim, and M. Prezzi. 2009. “Assessment of the axial load response of an H pile driven in multilayered soil.” J. Geotech. Geoenviron. Eng. 135 (12): 1789–1804. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000156.
Spagnoli, G., P. Doherty, G. Murphy, and A. Attari. 2015. “Estimation of the compression and tension loads for a novel mixed-in-place offshore pile for oil and gas platforms in silica and calcareous sands.” J. Petrol. Sci. Eng. 136 (Dec): 1–11. https://doi.org/10.1016/j.petrol.2015.10.032.
Stuedlein, A. W. 2008. “Bearing capacity and displacement of spread footings on aggregate pier reinforced clay.” Ph.D. thesis, Dept. of Civil and Environmental Engineering, Univ. of Washington.
Stuedlein, A. W., W. J. Neely, and T. M. Gurtowski. 2012. “Reliability-based design of augered cast-in-place piles in granular soils.” J. Geotech. Geoenviron. Eng. 138 (6): 709–717. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000635.
Terzis, D., R. Bernier-Latmani, and L. Laloui. 2016. “Fabric characteristics and mechanical response of bio-improved sand to various treatment conditions.” Geotech. Lett. 6 (1): 50–57. https://doi.org/10.1680/jgele.15.00134.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
Wang, Y., K. Soga, J. T. Dejong, and A. J. Kabla. 2019. “A microfluidic chip and its use in characterising the particle-scale behaviour of microbial-induced calcium carbonate precipitation (MICP).” Géotechnique 69 (12): 1086–1094. https://doi.org/10.1680/jgeot.18.P.031.
Whiffin, V. S. 2004. “Microbial CaCO3 precipitation for the production of biocement.” Ph.D. dissertation, School of Biological Sciences & Biotechnology, Morduch Univ.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
White, D. J., and M. D. Bolton. 2004. “Displacement and strain paths during plane-strain model pile installation in sand.” Géotechnique 54 (6): 375–397. https://doi.org/10.1680/geot.2004.54.6.375.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Chen, A. W. Stuedlein, T. M. Evans, J. Chu, L. Cheng, N. Jiang, H. Lin, H. Liu, and H. M. Aboel-Naga. 2020. “Restraint of particle breakage by biotreatment method.” J. Geotech. Geoenviron. Eng. 146 (11): 04020123. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002384.
Xiao, Y., X. He, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019a. “Unconfined compressive and splitting tensile strength of basalt fiber-reinforced biocemented sand.” J. Geotech. Geoenviron. Eng. 145 (9): 04019048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002108.
Xiao, Y., L. Wang, X. Jiang, T. M. Evans, A. W. Stuedlein, and H. Liu. 2019b. “Acoustic emission and force drop in grain crushing of carbonate sands.” J. Geotech. Geoenviron. Eng. 145 (9): 04019057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002141.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019c. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Xu, X., J. A. Schneider, and B. M. Lehane. 2008. “Cone penetration test (CPT) methods for end-bearing assessment of open- and closed-ended driven piles in siliceous sand.” Can. Geotech. J. 45 (8): 1130–1141. https://doi.org/10.1139/T08-035.
Yasufuku, N., and A. F. L. Hyde. 1995. “Pile end-bearing capacity in crushable sands.” Géotechnique 45 (4): 663–676. https://doi.org/10.1680/geot.1995.45.4.663.
Yasufuku, N., H. Ochiai, and S. Ohno. 2001. “Pile end-bearing capacity of sand related to soil compressibility.” Soils Found. 41 (4): 59–71. https://doi.org/10.3208/sandf.41.4_59.
Yu, F. 2019. “Influence of particle breakage on behavior of coral sands in triaxial tests.” Int. J. Geomech. 19 (12): 04019131. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001524.
Zhang, C., G. D. Nguyen, and I. Einav. 2013. “The end-bearing capacity of piles penetrating into crushable soils.” Géotechnique 63 (5): 341–354. https://doi.org/10.1680/geot.11.P.117.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 12December 2020

History

Received: Dec 14, 2019
Accepted: Jul 14, 2020
Published online: Oct 8, 2020
Published in print: Dec 1, 2020
Discussion open until: Mar 8, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Researcher, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]; [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-6265-9906. Email: [email protected]
Zhengyu Pan [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu, M.ASCE [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-8457-7602. Email: [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Assistant Professor, Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA 70803. ORCID: https://orcid.org/0000-0002-1641-4588. Email: [email protected]
Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., 10 Blk N1, 50 Nanyang Ave., Singapore 639798. ORCID: https://orcid.org/0000-0003-1404-1834. Email: [email protected]
Associate Professor, Center for Bio-mediated and Bio-inspired Geotechnics, Arizona State Univ., Tempe, AZ 85287-3005. ORCID: https://orcid.org/0000-0002-5050-0260. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share