Technical Papers
Sep 28, 2020

Numerical Model for Heat Transfer in Saturated Layered Soil with Effective Porosity

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 12

Abstract

A numerical model, called HT1, is presented for one-dimensional (1D) heat transfer in saturated incompressible layered soil with effective porosity and steady fluid flow. The model uses a series-parallel approach for heat transfer and accounts for advection, conduction, and thermal mechanical dispersion assuming local thermal equilibrium between solid and fluid phases. The key to HT1 is the definition of separate columns for the solid matrix and mobile pore fluid. The solid matrix column includes the solid phase and immobile pore fluid and consists of fixed elements. The mobile pore fluid column uses Lagrangian element-tracking to follow the fluid motion, which reduces numerical dispersion and simplifies heat transfer to that of dispersive flux between contiguous elements. Development of the HT1 model is first presented, followed by verification checks using available analytical and numerical solutions. Simulation results for several numeric examples are used to demonstrate model performance and the effects of various parameters, including effective porosity and multiple soil layers, on heat transfer behavior for saturated incompressible soil.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

Financial support for this investigation was provided by Grant No. CMMI-1622781 from the U.S. National Science Foundation and is gratefully acknowledged.

References

Abuel-Naga, H. M., D. T. Bergado, and A. Bouazza. 2008. “Thermal conductivity evolution of saturated clay under consolidation process.” Int. J. Geomech. 8 (2): 114–122. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(114).
Al-Nimr, M. A., and B. A. Abu-Hijleh. 2002. “Validation of thermal equilibrium assumption in transient forced convection flow in porous channel.” Transp. Porous Media 49 (2): 127–138. https://doi.org/10.1023/A:1016072713296.
Anderson, M. P. 2005. “Heat as a ground water tracer.” Ground Water 43 (6): 951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x.
Aschonitis, V. G., and V. Z. Antonopoulos. 2013. “New equations for the determination of soil saturated hydraulic conductivity using the van Genuchten model parameters and effective porosity.” Irrig. Drain. 62 (4): 537–542. https://doi.org/10.1002/ird.1751.
Başer, T., Y. Dong, A. M. Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, and J. S. McCartney. 2018. “Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone.” J. Geotech. Geoenviron. Eng. 144 (7): 04018038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001910.
Bear, J. 1972. Dynamics of fluids in porous media. New York: Elsevier.
Brandon, T. L., J. K. Mitchell, and J. T. Cameron. 1989. “Thermal instability in buried cable backfills.” J. Geotech. Eng. 115 (1): 38–55. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(38).
Bredehoeft, J. D., and I. S. Papaopulos. 1965. “Rates of vertical groundwater movement estimated from the Earth’s thermal profile.” Water Resour. Res. 1 (2): 325–328. https://doi.org/10.1029/WR001i002p00325.
Cui, W., A. Tsiampousi, D. M. Potts, K. A. Gawecka, and L. Zdravković. 2020. “Numerical modeling of time-dependent thermally induced excess pore fluid pressures in a saturated soil.” J. Geotech. Geoenviron. Eng. 146 (4): 04020007. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002218.
Dong, Y., J. S. McCartney, and N. Lu. 2015. “Critical review of thermal conductivity models for unsaturated soils.” Geotech. Geol. Eng. 33 (2): 207–221. https://doi.org/10.1007/s10706-015-9843-2.
Faizal, M., A. Bouazza, C. Haberfield, and J. S. McCartney. 2018. “Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes.” J. Geotech. Geoenviron. Eng. 144 (10): 04018072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001952.
Fetter, C. W. 1993. Contaminant hydrogeology. New York: Maxwell Macmillan International.
Fox, P. J. 2007a. “Coupled large strain consolidation and solute transport. I: Model development.” J. Geotech. Geoenviron. Eng. 133 (1): 3–15. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(3).
Fox, P. J. 2007b. “Coupled large strain consolidation and solute transport. II: Model verification and simulation results.” J. Geotech. Geoenviron. Eng. 133 (1): 16–29. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:1(16).
Fox, P. J., and J. D. Berles. 1997. “CS2: A piecewise-linear model for large strain consolidation.” Int. J. Numer. Anal. Methods Geomech. 21 (7): 453–475. https://doi.org/10.1002/(SICI)1096-9853(199707)21:7%3C453::AID-NAG887%3E3.0.CO;2-B.
Fox, P. J., and J. Lee. 2008. “Model for consolidation-induced solute transport with nonlinear and nonequilibrium sorption.” Int. J. Geomech. 8 (3): 188–198. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:3(188).
Fox, P. J., and H. F. Pu. 2015. “Benchmark problems for large strain consolidation.” J. Geotech. Geoenviron. Eng. 141 (11): 06015008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001357.
Gera, F., T. Hueckel, and A. Peano. 1996. “Critical issues in modelling the long-term hydro-thermomechanical performance of natural clay barriers.” Eng. Geol. 41 (1–4): 17–33. https://doi.org/10.1016/0013-7952(95)00047-X.
Hatch, C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl. 2006. “Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development.” Water Resour. Res. 42 (10): W10410. https://doi.org/10.1029/2005WR004787.
Hoor, A., and R. K. Rowe. 2013. “Potential for desiccation of geosynthetic clay liners used in barrier systems.” J. Geotech. Geoenviron. Eng. 139 (10): 1648–1664. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000899.
Hu, J., Y. Liu, H. Wei, K. Yao, and W. Wang. 2017. “Finite-element analysis of heat transfer of horizontal ground-freezing method in shield-driven tunneling.” Int. J. Geomech. 17 (10): 04017080. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000978.
Jaynes, D. B., S. D. Logsdon, and R. Horton. 1995. “Field method for measuring mobile immobile water-content and solute transfer rate coefficient.” Soil Sci. Soc. Am. J. 59 (2): 352–356. https://doi.org/10.2136/sssaj1995.03615995005900020012x.
Khashan, S. A., A. M. Al-Amiri, and M. A. Al-Nimr. 2005. “Assessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes.” Appl. Therm. Eng. 25 (10): 1429–1445. https://doi.org/10.1016/j.applthermaleng.2004.09.011.
Kim, J. Y., T. B. Edil, and J. K. Park. 1997. “Effective porosity and seepage velocity in column tests on compacted clay.” J. Geotech. Geoenviron. Eng. 123 (12): 1135–1142. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1135).
Kim, S. J., and S. P. Jang. 2002. “Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium.” Int. J. Heat Mass Transfer 45 (19): 3885–3896. https://doi.org/10.1016/S0017-9310(02)00109-6.
Kipp, K. L., Jr. 1997. Guide to the revised heat and solute transport simulator: HST3D Version 2. Denver: USGS.
LeVeque, R. J. 2002. Finite volume methods for hyperbolic problems. Cambridge, UK: Cambridge University Press.
Liu, Z., J. Zhang, S. Duan, Y. Xia, and P. Ciu. 2020. “A consolidation modelling algorithm based on the unified hardening constitute relation and Hansbo’s flow rule.” Comput. Geotech. 117 (Jan): 103233. https://doi.org/10.1016/j.compgeo.2019.103233.
Lu, N., and Y. Dong. 2015. “Closed-form equation for thermal conductivity of unsaturated soils at room temperature.” J. Geotech. Geoenviron. Eng. 141 (6): 04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295.
McCartney, J. S., M. Sánchez, and I. Tomac. 2016. “Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management.” Comput. Geotech. 75 (May): 244–256. https://doi.org/10.1016/j.compgeo.2016.01.002.
Meegoda, N., and S. Gunasekera. 1992. “A new method to measure the effective porosity of clays.” Geotech. Test. J. 15 (4): 340–351. https://doi.org/10.1520/GTJ10248J.
Minkowycz, W. J., A. Haji-Sheikh, and K. Vafai. 1999. “On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number.” Int. J. Heat Mass Transfer 42 (18): 3373–3385. https://doi.org/10.1016/S0017-9310(99)00043-5.
Molson, J. W., E. O. Frind, and C. D. Palmer. 1992. “Thermal energy storage in an unconfined aquifer: 2. Model development, validation, and application.” Water Resour. Res. 28 (10): 2857–2867. https://doi.org/10.1029/92WR01472.
Mondal, S., V. Sharma, D. N. Singh, and M. S. Baghini. 2017. “Determination of thermal regime in sandy soils: Mathematical framework ATHERES.” Int. J. Geomech. 17 (9): 04017045. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000918.
Neaupane, K. M., and P. Nanakorn. 2006. “Coupled heat-deformation-flow analysis for clayey soil.” J. Geotech. Geoenviron. Eng. 132 (4): 521–525. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(521).
Ngo, C. C., and F. C. Lai. 2009. “Heat transfer analysis of soil heating systems.” Int. J. Heat Mass Transfer 52 (25–26): 6021–6027. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.011.
Nikishkov, G. P. 2010. Programming finite elements in Java. New York: Springer.
Nkedi-Kizza, P., J. W. Biggar, M. T. van Genuchten, P. J. Wierenga, H. M. Selim, J. M. Davidson, and D. R. Nielsen. 1983. “Modeling tritium and chloride 36 transport through an aggregated oxisol.” Water Resour. Res. 19 (3): 691–700. https://doi.org/10.1029/WR019i003p00691.
Owen, S. P. 1925. “The distribution of temperature in a column of liquid flowing from a cold source into a receiver maintained at a higher temperature.” Proc. London Math. Soc. 23 (1): 238–249. https://doi.org/10.1112/plms/s2-23.1.238.
Park, J. K., J. Y. Kim, C. D. Madsen, and T. B. Edil. 1997. “Retardation of volatile organic compound movement by a soil-bentonite slurry cutoff wall amended with ground tires.” Water Environ. Res. 69 (5): 1022–1031. https://doi.org/10.2175/106143097X125722.
Pruess, K. 2004. “The TOUGH codes—A family of simulation tools for multiphase flow and transport processes in permeable media.” Vadose Zone J. 3 (3): 738–746. https://doi.org/10.2136/vzj2004.0738.
Pu, H. F., and P. J. Fox. 2016. “Model for coupled large strain consolidation and solute transport in layered soils.” Int. J. Geomech. 16 (2): 04015064. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000539.
Pu, H. F., P. J. Fox, and C. D. Shackelford. 2018. “Benchmark problem for large strain consolidation-induced solute transport.” J. Geotech. Geoenviron. Eng. 144 (3): 06018001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001826.
Qi, S., P. Simms, F. Daliri, and S. Vanapalli. 2019. “Coupling elasto-plastic behaviour of unsaturated soils with piecewise linear large-strain consolidation.” Géotechnique 70 (6): 518–537. https://doi.org/10.1680/jgeot.18.P.261.
Radhakrishna, H. S., K. C. Lau, and A. M. Crawford. 1984. “Coupled heat and moisture flow through soils.” J. Geotech. Eng. 110 (12): 1766–1784. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:12(1766).
Rowe, R. K., C. B. Lake, and R. J. Petrov. 2000. “Apparatus and procedures for assessing inorganic diffusion coefficients for geosynthetic clay liners.” Geotech. Test. J. 23 (2): 206–214. https://doi.org/10.1520/GTJ11045J.
Sellin, P., and O. X. Leupin. 2013. “The use of clay as an engineered barrier in radioactive-waste management—A review.” Clays Clay Miner. 61 (6): 477–498. https://doi.org/10.1346/CCMN.2013.0610601.
Shackelford, C. D., and S. M. Moore. 2013. “Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues.” Eng. Geol. 152 (1): 133–147. https://doi.org/10.1016/j.enggeo.2012.10.014.
Shao, M. G., R. Horton, and D. B. Jaynes. 1998. “Analytical solution for one-dimensional heat conduction-convection equation.” Soil Sci. Soc. Am. J. 62 (1): 123–128. https://doi.org/10.2136/sssaj1998.03615995006200010016x.
Sharratt, B. S., G. S. Campbell, and D. M. Glenn. 1992. “Soil heat-flux estimation based on the finite-difference form of the transient heat-flow equation.” Agric. For. Meteorol. 61 (1–2): 95–111. https://doi.org/10.1016/0168-1923(92)90027-2.
Stallman, R. W. 1965. “Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature.” J. Geophys. Res. 70 (12): 2821–2827. https://doi.org/10.1029/JZ070i012p02821.
Stephens, D. B., K. C. Hsu, M. A. Prieksat, M. D. Ankeny, N. Blandford, T. L. Roth, J. A. Kelsey, and J. R. Whitworth. 1998. “A comparison of estimated and calculated effective porosity.” Hydrogeol. J. 6 (1): 156–165. https://doi.org/10.1007/s100400050141.
Tamizdoust, M. M., and O. Ghasemi-Fare. 2020. “A fully coupled thermo-poro-mechanical finite element analysis to predict the thermal pressurization and thermally induced pore fluid flow in soil media.” Comput. Geotech. 117 (Jan): 103250. https://doi.org/10.1016/j.compgeo.2019.103250.
Tarnawski, V. R., and W. H. Leong. 2012. “A series-parallel model for estimating the thermal conductivity of unsaturated soils.” Int. J. Thermophys. 33 (7): 1191–1218. https://doi.org/10.1007/s10765-012-1282-1.
Vandenbohede, A., and L. Lebbe. 2010. “Parameter estimation based on vertical heat transport in the surficial zone.” Hydrogeol. J. 18 (4): 931–943. https://doi.org/10.1007/s10040-009-0557-5.
Van Genuchten, M. T., and P. Wierenga. 1977. “Mass transfer studies in sorbing porous media II: Experimental evaluation with tritium (3H2O).” Soil Sci. Soc. Am. J. 41 (2): 272–278. https://doi.org/10.2136/sssaj1977.03615995004100020022x.
Voss, C. I., and A. M. Provost. 2002. SUTRA, a model for saturated-unsaturated variable-density ground-water flow with solute or energy transport. Denver: USGS. https://doi.org/10.3133/wri024231.
Wang, C., and P. J. Fox. 2020. “Analytical solutions for heat transfer in saturated soil with effective porosity.” J. Geotech. Geoenviron. Eng. 146 (9): 04020095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002324.
Yao, J., and W. J. Likos. 2018. “Thermal conductivity of unsaturated sands at moderately elevated temperatures (25°C to 75°C).” In Proc., IFCEE, 321–331. Reston, VA: ASCE.
Yeşiller, N., J. L. Hanson, and W. L. Liu. 2005. “Heat generation in municipal solid waste landfills.” J. Geotech. Geoenviron. Eng. 131 (11): 1330–1344. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1330).
Zeinali, S. M., and S. L. Abdelaziz. 2020. “Effect of heating rate on thermally induced pore water pressures and volume change of saturated soils.” In Proc., Geo-Congress 2020, 31–39. Reston, VA: ASCE.
Zhu, Y., and P. J. Fox. 2000. “Smoothed particle hydrodynamics model for diffusion through porous media.” Transp. Porous Media 43 (3): 441–471. https://doi.org/10.1023/A:1010769915901.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 12December 2020

History

Received: Jan 15, 2020
Accepted: Jun 26, 2020
Published online: Sep 28, 2020
Published in print: Dec 1, 2020
Discussion open until: Feb 28, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802 (corresponding author). ORCID: https://orcid.org/0000-0003-4207-3497. Email: [email protected]
Patrick J. Fox, F.ASCE [email protected]
Shaw Professor and Head, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share