Abstract

The particle breakage and compressibility behavior of sands treated with microbially induced carbonate precipitation (MICP) has been investigated using oedometric compression tests. The acid washing technique was used to obtain the calcium carbonate (CaCO3) content and facilitate quantification of particle breakage by measurement of the particle size distribution (PSD). It was found that the compressibility was lower for specimens with a large CaCO3 content. Particle breakage increased with an increase in the stress or input work for specimens with approximately the same CaCO3 content. In addition, for a given applied stress or input work, MICP-treated specimens exhibited smaller particle breakage than untreated specimens, which shows that the MICP treatment can effectively restrain particle breakage.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data and models generated and used during the study appear in the published article.

Acknowledgments

The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), the National Science Foundation of China (Grant Nos. 41831282, 51678094, and 51578096), the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848), and the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681). T. Matthew Evans was partially supported by the U.S. National Science Foundation (Grant No. CMMI-1538460). The authors gratefully acknowledge this support.

References

Al Qabany, A., K. Soga, and C. Santamarina. 2012. “Factors affecting efficiency of microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 138 (8): 992–1001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Belkhatir, M., A. Arab, T. Schanz, H. Missoum, and N. Della. 2011. “Laboratory study on the liquefaction resistance of sand-silt mixtures: Effect of grading characteristics.” Granular Matter 13 (5): 599–609. https://doi.org/10.1007/s10035-011-0269-0.
Blauw, M., J. W. M. Lambert, and M. N. Latil. 2009. “Biosealing: A method for in situ sealing of leakages.” In Proc., ISGI’09, 125–130. Singapore: Research Publishing Services.
Buikema, N. D., B. E. Zwissler, E. A. Seagren, T. Oommen, and S. Vitton. 2018. “Stabilisation of iron mine tailings through biocalcification.” Environ. Geotech. 5 (2): 94–106. https://doi.org/10.1680/jenge.16.00006.
Carmona, J. P. S. F., P. J. Venda Oliveira, L. J. L. Lemos, and A. M. G. Pedro. 2018. “Improvement of a sandy soil by enzymatic calcium carbonate precipitation.” Proc. Inst. Civ. Eng. Geotech. Eng. 171 (1): 3–15. https://doi.org/10.1680/jgeen.16.00138.
Chekroun, K. B., C. Rodriguez-Navarro, M. T. Gonzalez-Munoz, J. M. Arias, G. Cultrone, and M. Rodriguez-Gallego. 2004. “Precipitation and growth morphology of calcium carbonate induced by Myxococcus Xanthus: Implications for recognition of bacterial carbonates.” J. Sediment. Res. 74 (6): 868–876. https://doi.org/10.1306/050504740868.
Chen, X., and J. Zhang. 2016. “Effect of load duration on particle breakage and dilative behavior of residual soil.” J. Geotech. Geoenviron. Eng. 142 (9): 06016008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001488.
Cheng, L., R. Cord-Ruwisch, and M. A. Shahin. 2013. “Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation.” Can. Geotech. J. 50 (1): 81–90. https://doi.org/10.1139/cgj-2012-0023.
Cheng, L., M. A. Shahin, and J. Chu. 2019. “Soil bio-cementation using a new one-phase low-pH injection method.” Acta Geotech. 14 (3): 615–626. https://doi.org/10.1007/s11440-018-0738-2.
Chou, C.-W., E. A. Seagren, A. H. Aydilek, and M. Lai. 2011. “Biocalcification of sand through ureolysis.” J. Geotech. Geoenviron. Eng. 137 (12): 1179–1189. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000532.
Chu, J., V. Ivanov, M. Naeimi, V. Stabnikov, and B. Li. 2013. “Microbial method for construction of an aquaculture pond in sand.” Géotechnique 63 (10): 871–875. https://doi.org/10.1680/geot.SIP13.P.007.
Ciantia, M. O., M. Arroyo, F. Calvetti, and A. Gens. 2015. “An approach to enhance efficiency of DEM modelling of soils with crushable grains.” Géotechnique 65 (2): 91–110. https://doi.org/10.1680/geot.13.P.218.
Cil, M. B., K. A. Alshibli, and P. Kenesei. 2017. “3D experimental measurement of lattice strain and fracture behavior of sand particles using synchrotron X-ray diffraction and tomography.” J. Geotech. Geoenviron. Eng. 143 (9): 04017048. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001737.
Cil, M. B., C. Sohn, and G. Buscarnera. 2020. “DEM modeling of grain size effect in brittle granular soils.” J. Eng. Mech. 146 (3): 04019138. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001713.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Cui, M., J. Zheng, R. Zhang, H. Lai, and J. Zhang. 2017. “Influence of cementation level on the strength behaviour of bio-cemented sand.” Acta Geotech. 12 (5): 971–986. https://doi.org/10.1007/s11440-017-0574-9.
Cunningham, C. N., T. M. Evans, and A. A. Tayebali. 2013. “Gradation effects on the mechanical response of crushed stone aggregate.” Int. J. Pavement Eng. 14 (3): 231–241. https://doi.org/10.1080/10298436.2012.690518.
Das, S. K., and A. Das. 2019. “Influence of quasi-static loading rates on crushable granular materials: A DEM analysis.” Powder Technol. 344 (Feb): 393–403. https://doi.org/10.1016/j.powtec.2018.12.024.
DeJong, J. T., M. B. Fritzges, and K. Nüsslein. 2006. “Microbially induced cementation to control sand response to undrained shear.” J. Geotech. Geoenviron. Eng. 132 (11): 1381–1392. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:11(1381).
DeJong, J. T., B. C. Martinez, T. R. Ginn, C. Hunt, D. Major, and B. Tanyu. 2014. “Development of a scaled repeated five-spot treatment model for examining microbial induced calcite precipitation feasibility in field applications.” Geotech. Test. J. 37 (3): 424–435. https://doi.org/10.1520/GTJ20130089.
DeJong, J. T., B. M. Mortensen, B. C. Martinez, and D. C. Nelson. 2010. “Bio-mediated soil improvement.” Ecol. Eng. 36 (2): 197–210. https://doi.org/10.1016/j.ecoleng.2008.12.029.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Feng, K., and B. M. Montoya. 2016. “Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading.” J. Geotech. Geoenviron. Eng. 142 (1): 04015057. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001379.
Feng, K., and B. M. Montoya. 2017. “Quantifying level of microbial-induced cementation for cyclically loaded sand.” J. Geotech. Geoenviron. Eng. 143 (6): 06017005. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001682.
Gomez, M. G., C. M. Anderson, C. M. R. Graddy, J. T. DeJong, D. C. Nelson, and T. R. Ginn. 2017. “Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands.” J. Geotech. Geoenviron. Eng. 143 (5): 04016124. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001640.
Gomez, M. G., C. E. Hunt, B. C. Martinez, J. T. Dejong, D. W. Major, and S. M. Dworatzek. 2015. “Field-scale bio-cementation tests to improve sands.” Proc. Inst. Civ. Eng. Ground Improv. 168 (3): 206–216. https://doi.org/10.1680/grim.13.00052.
Gowthaman, S., S. Mitsuyama, K. Nakashima, M. Komatsu, and S. Kawasaki. 2019. “Biogeotechnical approach for slope soil stabilization using locally isolated bacteria and inexpensive low-grade chemicals: A feasibility study on Hokkaido expressway soil, Japan.” Soils Found. 59 (2): 484–499. https://doi.org/10.1016/j.sandf.2018.12.010.
Guida, G., F. Casini, G. M. B. Viggiani, E. Ando, and G. Viggiani. 2018. “Breakage mechanisms of highly porous particles in 1D compression revealed by X-ray tomography.” Geotech. Lett. 8 (2): 155–160. https://doi.org/10.1680/jgele.18.00035.
Guida, G., I. Einav, B. Marks, and F. Casini. 2020. “Linking micro grainsize polydispersity to macro porosity.” Int. J. Solids Struct. 187 (3): 75–84. https://doi.org/10.1016/j.ijsolstr.2018.11.032.
Hoang, T., J. Alleman, B. Cetin, K. Ikuma, and S.-G. Choi. 2019. “Sand and silty-sand soil stabilization using bacterial enzyme–induced calcite precipitation (BEICP).” Can. Geotech. J. 56 (6): 808–822. https://doi.org/10.1139/cgj-2018-0191.
Indraratna, B., D. Ionescu, and H. D. Christie. 1998. “Shear behavior of railway ballast based on large-scale triaxial tests.” J. Geotech. Geoenviron. Eng. 124 (5): 439–449. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(439).
Indraratna, B., Y. Sun, and S. Nimbalkar. 2016. “Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading.” J. Geotech. Geoenviron. Eng. 142 (7): 04016016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001463.
Ivanov, V., V. Stabnikov, O. Stabnikova, and Z. Ahmed. Forthcoming. “Biocementation technology for construction of artificial oasis in sandy desert.” J. King Saud Univ. Eng. Sci. https://doi.org/10.1016/j.jksues.2019.07.003.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Ladd, R. S. 1978. “Preparing test specimens using under compaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lade, P. V., J. A. Yamamuro, and P. A. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lee, M. L., W. S. Ng, and Y. Tanaka. 2013. “Stress-deformation and compressibility responses of bio-mediated residual soils.” Ecol. Eng. 60 (Nov): 142–149. https://doi.org/10.1016/j.ecoleng.2013.07.034.
Li, M., L. Li, U. Ogbonnaya, K. Wen, A. Tian, and F. Amini. 2016. “Influence of fiber addition on mechanical properties of MICP-treated sand.” J. Mater. Civ. Eng. 28 (4): 04015166. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001442.
Lin, H., M. T. Suleiman, D. G. Brown, and E. Kavazanjian Jr. 2016a. “Mechanical behavior of sands treated by microbially induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 142 (2): 04015066. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001383.
Lin, H., M. T. Suleiman, H. M. Jabbour, D. G. Brown, and E. Kavazanjian Jr. 2016b. “Enhancing the axial compression response of pervious concrete ground improvement piles using biogrouting.” J. Geotech. Geoenviron. Eng. 142 (10): 04016045. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001515.
Liu, H., and D. Zou. 2013. “Associated generalized plasticity framework for modeling gravelly soils considering particle breakage.” J. Eng. Mech. 139 (5): 606–615. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513.
Liu, L., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019. “Strength, stiffness, and microstructure characteristics of biocemented calcareous sand.” Can. Geotech. J. 56 (10): 1502–1513. https://doi.org/10.1139/cgj-2018-0007.
Mahawish, A., A. Bouazza, and W. P. Gates. 2018. “Effect of particle size distribution on the bio-cementation of coarse aggregates.” Acta Geotech. 13 (4): 1019–1025. https://doi.org/10.1007/s11440-017-0604-7.
Martinez, B. C., J. T. DeJong, T. R. Ginn, B. M. Montoya, T. H. Barkouki, C. Hunt, B. Tanyu, and D. Major. 2013. “Experimental optimization of microbial-induced carbonate precipitation for soil improvement.” J. Geotech. Geoenviron. Eng. 139 (4): 587–598. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000787.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Géotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Géotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Mitchell, A. C., and F. G. Ferris. 2006. “The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate.” Geomicrobiol. J. 23 (3–4): 213–226. https://doi.org/10.1080/01490450600724233.
Montoya, B. M., and J. T. DeJong. 2015. “Stress-strain behavior of sands cemented by microbially induced calcite precipitation.” J. Geotech. Geoenviron. Eng. 141 (6): 04015019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001302.
Montoya, B. M., J. T. DeJong, and R. W. Boulanger. 2013. “Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation.” Géotechnique 63 (4): 302–312. https://doi.org/10.1680/geot.SIP13.P.019.
Montoya, B. M., S. Safavizadeh, and M. A. Gabr. 2019. “Enhancement of coal ash compressibility parameters using microbial-induced carbonate precipitation.” J. Geotech. Geoenviron. Eng. 145 (5): 04019018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002036.
Mujah, D., L. Cheng, and A. Shahin Mohamed. 2019. “Microstructural and geomechanical study on biocemented sand for optimization of MICP process.” J. Mater. Civ. Eng. 31 (4): 04019025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002660.
Mujah, D., M. A. Shahin, and L. Cheng. 2016. “State-of-the-art review of biocementation by microbially induced calcite precipitation (MICP) for soil stabilization.” Geomicrobiol. J. 34 (6): 524–537. https://doi.org/10.1080/01490451.2016.1225866.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Nafisi, A., B. M. Montoya, and T. M. Evans. 2020. “Shear strength envelopes of biocemented sands with varying particle size and cementation level.” J. Geotech. Geoenviron. Eng. 146 (3): 04020002. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002201.
Nassar, M. K., D. Gurung, M. Bastani, T. R. Ginn, B. Shafei, M. G. Gomez, C. M. R. Graddy, D. C. Nelson, and J. T. DeJong. 2018. “Large-scale experiments in microbially induced calcite precipitation (MICP): Reactive transport model development and prediction.” Water Resour. Res. 54 (1): 480–500. https://doi.org/10.1002/2017WR021488.
Nemati, M., and G. Voordouw. 2003. “Modification of porous media permeability, using calcium carbonate produced enzymatically in situ.” Enzyme Microb. Technol. 33 (5): 635–642. https://doi.org/10.1016/S0141-0229(03)00191-1.
Neupane, D., H. Yasuhara, N. Kinoshita, and Y. Ando. 2015. “Distribution of mineralized carbonate and its quantification method in enzyme mediated calcite precipitation technique.” Soils Found. 55 (2): 447–457. https://doi.org/10.1016/j.sandf.2015.02.018.
O’Donnell, T. S., and E. Kavazanjian Jr. 2015. “Stiffness and dilatancy improvements in uncemented sands treated through MICP.” J. Geotech. Geoenviron. Eng. 141 (11): 02815004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001407.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of sands.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Roscoe, K. H., A. N. Schofield, and A. Thurairajah. 1963. “Yielding of clays in states wetter than critical.” Géotechnique 13 (3): 211–240. https://doi.org/10.1680/geot.1963.13.3.211.
Salifu, E., E. Maclachlan, K. R. Iyer, C. W. Knapp, and A. Tarantino. 2016. “Application of microbially induced calcite precipitation in erosion mitigation and stabilisation of sandy soil foreshore slopes: A preliminary investigation.” Eng. Geol. 201 (Feb): 96–105. https://doi.org/10.1016/j.enggeo.2015.12.027.
Salim, W., and B. Indraratna. 2004. “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J. 41 (4): 657–671. https://doi.org/10.1139/t04-025.
Sammis, C., G. King, and R. Biegel. 1987. “The kinematics of gouge deformation.” Pure Appl. Geophys. 125 (5): 777–812. https://doi.org/10.1007/BF00878033.
Sasaki, T., and R. Kuwano. 2016. “Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3.” Soils Found. 56 (3): 485–495. https://doi.org/10.1016/j.sandf.2016.04.014.
Suescun-Florez, E., M. Iskander, and S. Bless. 2020. “Evolution of particle damage of sand during axial compression via arrested tests.” Acta Geotech. 15 (1): 95–112. https://doi.org/10.1007/s11440-019-00892-w.
Tagliaferri, F., J. Waller, E. Andò, S. A. Hall, G. Viggiani, P. Bésuelle, and J. T. DeJong. 2011. “Observing strain localisation processes in bio-cemented sand using X-ray imaging.” Granular Matter 13 (3): 247–250. https://doi.org/10.1007/s10035-011-0257-4.
Terzis, D., and L. Laloui. 2019. “A decade of progress and turning points in the understanding of bio-improved soils: A review.” Geomech. Energy Environ. 19 (Sep): 100116. https://doi.org/10.1016/j.gete.2019.03.001.
Tovar-Valencia, R. D., A. Galvis-Castro, R. Salgado, and M. Prezzi. 2018. “Effect of surface roughness on the shaft resistance of displacement model piles in sand.” J. Geotech. Geoenviron. Eng. 144 (3): 04017120. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001828.
Tsoungui, O., D. Vallet, and J. C. Charmet. 1999. “Numerical model of crushing of grains inside two-dimensional granular materials.” Powder Technol. 105 (1–3): 190–198. https://doi.org/10.1016/S0032-5910(99)00137-0.
Ueng, T. S., and T. J. Chen. 2000. “Energy aspects of particle breakage in drained shear of sands.” Géotechnique 50 (1): 65–72. https://doi.org/10.1680/geot.2000.50.1.65.
van Paassen, L. A. 2011. “Bio-mediated ground improvement: From laboratory experiment to pilot applications.” In Geo-Frontiers 2011: Advances in Geotechnical Engineering, Geotechnical Special Publication 211, edited by J. Han and D. E. Alzamora, 4099–4108. Reston, VA: ASCE.
van Paassen, L. A., C. M. Daza, M. Staal, D. Y. Sorokin, W. van der Zon, and M. C. M. van Loosdrecht. 2010a. “Potential soil reinforcement by biological denitrification.” Ecol. Eng. 36 (2): 168–175. https://doi.org/10.1016/j.ecoleng.2009.03.026.
van Paassen, L. A., R. Ghose, T. J. M. van der Linden, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2010b. “Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment.” J. Geotech. Geoenviron. Eng. 136 (12): 1721–1728. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000382.
van Paassen, L. A., M. P. Harkes, G. A. van Zwieten, W. H. van der Zon, W. R. L. van der Star, and M. C. M. van Loosdrecht. 2009. “Scale up of BioGrout: A biological ground reinforcement method.” In Proc., 17th Int. Conf. on Soil Mechanics and Geotechnical Engineering, edited by M. S. M. Hamza and Y. E. Mossallamy, 2328–2333. Amsterdam, Netherlands: IOS Press.
Venda Oliveira, P. J., M. S. da Costa, J. N. P. Costa, and M. Fernanda Nobre. 2015. “Comparison of the ability of two bacteria to improve the behavior of sandy soil.” J. Mater. Civ. Eng. 27 (1): 06014025. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001138.
Weber, M., and R. F. Moran. 1938. “A precise method for sieving analyses.” Ind. Eng. Chem. Anal. Ed. 10 (4): 180–184. https://doi.org/10.1021/ac50120a003.
Wei, H., T. Zhao, Q. Meng, X. Wang, and B. Zhang. 2020. “Quantifying the morphology of calcareous sands by dynamic image analysis.” Int. J. Geomech. 20 (4): 04020020. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001640.
Whiffin, V. S., L. A. van Paassen, and M. P. Harkes. 2007. “Microbial carbonate precipitation as a soil improvement technique.” Geomicrobiol. J. 24 (5): 417–423. https://doi.org/10.1080/01490450701436505.
Xiao, P., H. Liu, A. W. Stuedlein, T. M. Evans, and Y. Xiao. 2019a. “Effect of relative density and bio-cementation on the cyclic response of calcareous sand.” Can. Geotech. J. 56 (12): 1849–1862. https://doi.org/10.1139/cgj-2018-0573.
Xiao, P., H. Liu, Y. Xiao, A. W. Stuedlein, and T. M. Evans. 2018. “Liquefaction resistance of bio-cemented calcareous sand.” Soil Dyn. Earthquake Eng. 107 (Apr): 9–19. https://doi.org/10.1016/j.soildyn.2018.01.008.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage.” J. Geotech. Geoenviron. Eng. 140 (12): 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.
Xiao, Y., H. Liu, X. Ding, Y. Chen, J. Jiang, and W. Zhang. 2016. “Influence of particle breakage on critical state line of rockfill material.” Int. J. Geomech. 16 (1): 04015031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000538.
Xiao, Y., L. Long, T. M. Evans, H. Zhou, H. Liu, and A. W. Stuedlein. 2019b. “Effect of particle shape on stress-dilatancy responses of medium-dense sands.” J. Geotech. Geoenviron. Eng. 145 (2): 04018105. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001994.
Xiao, Y., M. Meng, A. Daouadjie, Q. Chen, Z. Wu, and X. Jiang. 2020. “Effect of particle size on crushing and deformation behaviors of rockfill materials.” Geosci. Front. 11 (2): 375–388. https://doi.org/10.1016/j.gsf.2018.10.010.
Xiao, Y., A. W. Stuedlein, J. Ran, T. M. Evans, L. Cheng, H. Liu, L. A. van Paassen, and J. Chu. 2019c. “Effect of particle shape on the strength and stiffness of biocemented glass beads.” J. Geotech. Geoenviron. Eng. 145 (11): 06019016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002165.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019d. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotech. 14 (6): 1741–1755. https://doi.org/10.1007/s11440-019-00790-1.
Yang, Z. X., R. J. Jardine, B. T. Zhu, P. Foray, and C. H. C. Tsuha. 2010. “Sand grain crushing and interface shearing during displacement pile installation in sand.” Géotechnique 60 (6): 469–482. https://doi.org/10.1680/geot.2010.60.6.469.
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Yu, X., C. Qian, and J. Jiang. 2019. “Desert sand cemented by bio-magnesium ammonium phosphate cement and its microscopic properties.” Constr. Build. Mater. 200 (Mar): 116–123. https://doi.org/10.1016/j.conbuildmat.2018.12.046.
Zamani, A., and B. M. Montoya. 2018. “Undrained monotonic shear response of MICP-treated silty sands.” J. Geotech. Geoenviron. Eng. 144 (6): 04018029. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001861.
Zamani, A., and B. M. Montoya. 2019. “Undrained cyclic response of silty sands improved by microbial induced calcium carbonate precipitation.” Soil Dyn. Earthquake Eng. 120 (May): 436–448. https://doi.org/10.1016/j.soildyn.2019.01.010.
Zhang, Y., G. Buscarnera, and I. Einav. 2016. “Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics.” Géotechnique 66 (2): 149–160. https://doi.org/10.1680/jgeot.15.P.119.
Zhao, B., J. Wang, M. R. Coop, G. Viggiani, and M. Jiang. 2015. “An investigation of single sand particle fracture using X-ray micro-tomography.” Géotechnique 65 (8): 625–641. https://doi.org/10.1680/geot.4.P.157.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 11November 2020

History

Received: Feb 26, 2019
Accepted: Jun 18, 2020
Published online: Sep 2, 2020
Published in print: Nov 1, 2020
Discussion open until: Feb 2, 2021

Permissions

Request permissions for this article.

Authors

Affiliations

Professor, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). ORCID: https://orcid.org/0000-0002-9411-4660. Email: [email protected]
Graduate Student, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-6265-9906. Email: [email protected]
Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-8457-7602. Email: [email protected]
Jian Chu, M.ASCE [email protected]
Professor, School of Civil and Environmental Engineering, Nanyang Technological Univ., 10 Blk N1, 50 Nanyang Ave., Singapore 639798. Email: [email protected]
Liang Cheng [email protected]
Researcher, School of Environmental and Safety Engineering, Jiangsu Univ., Zhengjiang 212013, China. Email: [email protected]
Researcher, Dept. of Civil and Environmental Engineering, Univ. of Hawaii at Manoa, Honolulu, HI 96822. ORCID: https://orcid.org/0000-0001-6070-4307. Email: [email protected]
Researcher, Dept. of Civil and Environmental Engineering, Lehigh Univ., Bethlehem, PA 18015. Email: [email protected]
Hanlong Liu [email protected]
Professor and Vice President, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
H. M. Aboel-Naga [email protected]
Associate Professor, School of Engineering and Mathematical Sciences, La Trobe Univ., Melbourne, VIC 3086, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share