Abstract

Given that municipal solid waste (MSW) in landfills can reach temperatures greater than 50°C that may be sustained for several decades due to methanogenic bacteria activity, the generated heat is an alternative energy source that can be exploited for direct heating of nearby infrastructure or for augmenting industrial processes. However, in situ measurements of MSW thermal properties are needed to properly design heat extraction systems for landfills. In this study, the spatial and temporal evolution of the waste temperatures in a new MSW landfill cell in Santee, California, were monitored over 13 months. After the temperatures reached stable values, a 17-day heat extraction thermal response test was performed on serpentine geothermal heat exchangers that were installed at three elevations in the cell during waste placement. Because the serpentine segments were separated from each other to minimize thermal interference during the heat extraction test, the pipes were assumed to represent line heat sinks. The values of effective thermal conductivity estimated from infinite line source analyses ranged from 0.86 to 1.32  W/m°C, which are consistent with values on the higher range of those from laboratory tests on MSW.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

All data, models, and code generated or used during the study appear in the published article.

Acknowledgments

Funding from the Technical Advisory Committee of Geosyntec Consultants is greatly appreciated. The generous support of Republic Services, Inc., in providing a test site and assisting with planning and installation of the heat exchanger system is gratefully acknowledged, along with the help of Gabe Gonzales and Jamie C. Harris with the installation of the system and Jesus C. Torres and Neil Mohr with the implementation planning. The scholarship received by the first author from the Brazilian Federal Agency for Support and Evaluation of Graduate Education – CAPES (Process No. 99999.002164/2015-09) is highly appreciated.

References

Ali, M. A., A. Bouazza, R. M. Singh, W. P. Gates, and R. K. Rowe. 2016. “Thermal conductivity of geosynthetic clay liners.” Can. Geotech. J. 53 (9): 1510–1521. https://doi.org/10.1139/cgj-2015-0585.
ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers). 2002. Methods for determining soil and rock formation thermal properties from field tests. Atlanta: ASHRAE.
ASTM. 2014. Standard test method for determination of thermal conductivity of soil and soft rock by thermal needle probe procedure. ASTM D5334. West Conshohocken, PA: ASTM.
Baldwin, T. D., J. Stinson, and R. K. Ham. 1998. “Decomposition of specific materials buried within sanitary landfills.” J. Environ. Eng. 124 (12): 1193–1202. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:12(1193).
Bareither, C. A., R. J. Breitmeyer, C. H. Benson, M. A. Barlaz, and T. B. Edil. 2012. “Deer track bioreactor experiment: Field-scale evaluation of municipal solid waste bioreactor performance.” J. Geotech. Geoenviron. Eng. 138 (6): 658–670. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000636.
Barlaz, M. A., R. K. Ham, and D. M. Schaefer. 1990. “Methane production from municipal refuse: A review of enhancement techniques and microbial dynamics.” Crit. Rev. Environ. Sci. Technol. 19 (6): 557–584. https://doi.org/10.1080/10643389009388384.
Beziat, A., M. Dardaine, and V. Gabis. 1988. “Effect of compaction pressure and water content on the thermal conductivity of some natural clays.” Clays Clay Miner. 36 (5): 462–466. https://doi.org/10.1346/CCMN.1988.0360512.
Bookter, T. J., and R. K. Ham. 1982. “Stabilization of solid waste in landfills.” J. Environ. Eng. 108 (6): 1089–1100.
Bouazza, A., H. Nahlawi, and M. Aylward. 2011. “In situ temperature monitoring in an organic-waste landfill cell.” J. Geotech. Geoenviron. Eng. 137 (12): 1286–1289. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000533.
Carslaw, H. S., and J. C. Jaeger. 1959. Conduction of heat in solids. 2nd ed. Oxford, UK: Oxford University Press.
Christensen, T. H., P. Kjeldsen, and R. Stegmann. 1992. “Effects of landfill management procedures on landfill stabilization and leachate and gas quality.” In Landfilling of waste: Leachate. London: Elsevier Applied Science.
City of San Diego. 2014. “Waste characterization study: 2012–2013.” Accessed September 1, 2019. https://www.sandiego.gov/sites/default/files/legacy/environmental-services/pdf/recycling/CompStudy.pdf.
Coccia, C. J. R., R. Gupta, J. Morris, and J. S. McCartney. 2013. “Municipal solid waste landfills as geothermal heat sources.” Renewable Sustainable Energy Rev. 19 (Mar): 463–474. https://doi.org/10.1016/j.rser.2012.07.028.
Emmi, G., A. Zarrella, A. Zuanetti, and M. De Carli. 2016. “Use of municipal solid waste landfill as heat source of heat pump.” Energy Procedia 101 (Nov): 352–359. https://doi.org/10.1016/j.egypro.2016.11.045.
Faitli, J., A. Erdélyi, J. Kontra, T. Magyar, J. Várfalvi, and A. Murányi. 2015a. “Pilot scale decomposition heat extraction and utilization system built into the ‘Gyál municipal solid waste landfill’.” In Proc., Sardinia 2015: 15th Int. Waste Management and Landfill Symp., 12. Hamburg, Germany: International Waste Working Group.
Faitli, J., T. Magyar, A. Erdélyi, and A. Murányi. 2015b. “Characterization of thermal properties of municipal solid waste landfills.” Waste Manage. (Oxford) 36 (Feb): 213–221. https://doi.org/10.1016/j.wasman.2014.10.028.
Farquhar, G. J., and F. A. Rovers. 1973. “Gas production during refuse decomposition.” Water Air Soil Pollut. 2 (4): 483–495. https://doi.org/10.1007/BF00585092.
Florides, G., and S. Kalogirou. 2007. “Ground heat exchangers—A review of systems, models and applications.” Renewable Energy 32 (15): 2461–2478. https://doi.org/10.1016/j.renene.2006.12.014.
Gehlin, S., and J. D. Spitler. 2002. Thermal response test—State of the art 2001. Paris: International Energy Agency, Energy Conservation through Energy Storage.
Gehlin, S. E., and G. Hellstrom. 2003. “Comparison of four models for thermal response test evaluation.” ASHRAE Trans. 109: 1–12.
Gibbons, R. D., J. W. F. Morris, M. D. Caldwell, C. P. Prucha, and B. F. Staley. 2014. “Longitudinal data analysis in support of functional stability concepts for leachate management at closed municipal landfills.” Waste Manage. (Oxford) 34 (9): 1674–1682. https://doi.org/10.1016/j.wasman.2014.05.016.
Grillo, R. J. 2014. “Energy recycling—Landfill waste heat generation and recovery.” Curr. Sustainable Renewable Energy Rep. 1 (4): 150–156. https://doi.org/10.1007/s40518-014-0017-2.
Hanson, J. L., T. B. Edil, and N. Yeşiller. 2000. “Thermal properties of high water content materials.” In Geotechnics of high water content materials, edited by T. B. Edil and P. J. Fox, 137–151. West Conshohocken, PA: ASTM.
Hanson, J. L., N. Yeşiller, and N. K. Oettle. 2010. “Spatial and temporal temperature distributions in municipal solid waste landfills.” J. Environ. Eng. 136 (8): 804–814. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000202.
Hao, Z., M. Sun, J. J. Ducoste, C. H. Benson, S. Luettich, M. J. Castaldi, and M. A. Barlaz. 2017. “Heat generation and accumulation in municipal solid waste landfills.” Environ. Sci. Technol. 51 (21): 12434–12442. https://doi.org/10.1021/acs.est.7b01844.
Ingersoll, L. R., and H. J. Plass. 1948. “Theory of the ground pipe heat source for the heat pump.” Heating Pip. Air Conditioning 20 (7): 119–122.
Jafari, N. H., T. D. Stark, and R. Roper. 2014a. “Classification and reactivity of secondary aluminum production waste.” J. Hazard. Toxic Radioact. Waste 18 (4): 04014018. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000223.
Jafari, N. H., T. D. Stark, and K. Rowe. 2014b. “Service life of HDPE geomembranes subjected to elevated temperatures.” J. Hazard. Toxic Radioact. Waste 18 (1): 16–26. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000188.
Jafari, N. H., T. D. Stark, and T. Thalhamer. 2017. “Progression of elevated temperatures in municipal solid waste landfills.” J. Geotech. Geoenviron. Eng. 143 (8): 05017004. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001683.
Kavazanjian, E., Jr., N. Matasovic, R. Bonaparte, and G. R. Schmertmann. 1995. “Evaluation of MSW properties for seismic analysis.” In Vol. 2 of Proc., Geoenvironment 2000, 1126–1141. Reston, VA: ASCE.
Kjeldsen, P. K., M. A. Barlaz, A. P. Rooker, A. Baun, A. Ledin, and T. H. Christensen. 2003. “Present and long-term composition of MSW landfill leachate: A review.” Crit. Rev. Environ. Sci. Technol. 32 (4): 297–336. https://doi.org/10.1080/10643380290813462.
Lamothe, D., and L. Edgers. 1994. “The effects of environmental parameters on the laboratory compression of refuse.” In Proc., 17th Int. Madison Waste Conf., 592–604. Madison, WI: University of Wisconsin Press.
Lefebvre, X., S. Lanini, and D. Houi. 2000. “The role of aerobic activity on refuse temperature rise. I: Landfill experimental study.” Waste Manage. Res. 18 (5): 444–452. https://doi.org/10.1177/0734242X0001800505.
Li, Y., C. Wu, X. Xing, M. Yue, and Y. Shang. 2012. “Testing and analysis of the soil thermal conductivity in tropical desert and grassland of West Africa.” In Proc., 9th Int. Pipeline Conf., 9. New York: ASME.
Mogensen, P. 1983. “Fluid to duct wall heat transfer in duct system heat storages.” In Proc., Int. Conf. on Subsurface Heat Storage in Theory and Practice, 652–659. Stockholm, Sweden: Swedish Council for Building Research.
Murphy, K. D., K. S. Henry, and J. S. McCartney. 2014. “Impact of horizontal run-out length on the thermal response of full-scale energy foundations.” In Proc., Geo-Congress 2014, 2715–2724. Reston, VA: ASCE.
Pfeffer, J. T. 1974. “Temperature effects on anaerobic fermentation of domestic refuse.” Biotechnol. Bioeng. 16 (6): 771–787. https://doi.org/10.1002/bit.260160607.
Pohland, F. G., and S. R. Harper. 1986. Critical review and summary of leachate and gas production from landfills. Cincinnati: EPA.
Raymond, J., R. Therrien, L. Gosselin, and R. Lefebvre. 2011. “A review of thermal response test analysis using pumping test concepts.” Ground Water 49 (6): 932–945. https://doi.org/10.1111/j.1745-6584.2010.00791.x.
Rees, J. F. 1980a. “The fate of carbon compounds in the landfill disposal of organic matter.” J. Chem. Technol. Biotechnol. 30 (1): 161–175. https://doi.org/10.1002/jctb.503300121.
Rees, J. F. 1980b. “Optimisation of methane production and refuse decomposition in landfills by temperature control.” J. Chem. Technol. Biotechnol. 30 (1): 458–465. https://doi.org/10.1002/jctb.503300158.
Rowe, R. K., and A. Hoor. 2009. “Predicted temperatures and service lives of secondary geomembrane landfill liners.” Geosynthetics Int. 16 (2): 71–82. https://doi.org/10.1680/gein.2009.16.2.71.
Sanner, B., G. Hellstrom, J. Spitler, and S. Gehlin. 2005. “Thermal response test—Current status and world-wide application.” In Proc., World Geothermal Congress, 10. Antalya, Turkey: International Geothermal Association.
Sanner, B., E. Mands, M. K. Sauer, and E. Grundmann. 2008. “Thermal response test, a routine method to determine thermal ground properties for GSHP design.” In Proc., 9th Int. IEA Heat Pump Conf., 12. Paris: International Institute of Refrigeration.
Shariatmadari, N., A. Mansouri, and M. Zarrabi. 2011. “Monitoring the temperature in a sanitary landfill in Tehran.” In Proc., Geo-Frontiers 2011, 1016–1022. Reston, VA: ASCE.
Shi, J., T. Zhang, J. Zhang, Y. Ai, and Y. Zhang. 2018. “Prototype heat exchange and monitoring system at municipal solid waste landfill in China.” Waste Manage. (Oxford) 78 (Aug): 659–668. https://doi.org/10.1016/j.wasman.2018.06.036.
Signorelli, S., S. Bassetti, D. Pahud, and T. Kohl. 2007. “Numerical evaluation of thermal response tests.” Geothermics 36 (2): 141–166. https://doi.org/10.1016/j.geothermics.2006.10.006.
Singh, R. M., and A. Bouazza. 2013. “Thermal conductivity of geosynthetics.” Geotext. Geomembr. 39 (Aug): 1–8. https://doi.org/10.1016/j.geotexmem.2013.06.002.
Southen, J., and R. K. Rowe. 2005. “Laboratory investigation of geosynthetic clay liner desiccation in a composite liner subjected to thermal gradients.” J. Geotech. Geoenviron. Eng. 131 (7): 925–935. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:7(925).
Staley, B. F., and M. A. Barlaz. 2009. “Composition of municipal solid waste in the U.S. and implications for carbon sequestration and methane yield.” J. Environ. Eng. 135 (10): 901–909. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000032.
Stark, T. D., J. W. Martin, G. T. Gerbasi, T. Thalhamer, and R. E. Gortner. 2012. “Aluminum waste reactions indicators in a municipal solid waste landfill.” J. Geotech. Geoenviron. Eng. 138 (3): 252–261. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000581.
Stauffer, F., P. Bayer, P. Blum, N. Giraldo, and W. Kinzelbach. 2013. Thermal use of shallow groundwater, 250. Boca Raton, FL: CRC Press.
USEPA. 1993. Criteria for solid waste disposal facilities: A guide for owners/operators. Washington, DC: USEPA.
Yeşiller, N., J. L. Hanson, and K. B. Kopp. 2016. “The design and installation of a prototype heat extraction system at a municipal solid waste landfill.” In Proc., Geo-Chicago 2016: Geotechnics for Sustainable Energy, 311–320. Reston, VA: ASCE.
Yeşiller, N., J. L. Hanson, and W. L. Liu. 2005. “Heat generation in municipal solid waste landfills.” J. Geotech. Geoenviron. Eng. 131 (11): 1330–1344. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1330).
Yeşiller, N., J. L. Hanson, and E. H. Yee. 2015. “Waste heat generation: A comprehensive review.” Waste Manage. (Oxford) 42 (Aug): 166–179. https://doi.org/10.1016/j.wasman.2015.04.004.
Young, A. 1992. Application of computer modelling to landfill processes. London: Dept. of Environment.
Zekkos, D., J. D. Bray, E. Kavazanjian Jr., N. Matasovic, E. M. Rathje, M. F. Riemer, and K. H. Stokoe II. 2006. “Unit weight of municipal solid waste.” J. Geotech. Geoenviron. Eng. 132 (10): 1250–1261. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:10(1250).

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 9September 2020

History

Received: Jun 11, 2019
Accepted: Apr 3, 2020
Published online: Jun 23, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 23, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Leticia M. Nocko, A.M.ASCE [email protected]
Graduate Research Assistant, Dept. of Structural Engineering, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0085. Email: [email protected]
Keaton Botelho, M.ASCE [email protected]
Senior Engineer, Geosyntec Consultants, 16644 West Bernardo Dr., Suite 301, San Diego, CA 92127. Email: [email protected]
Jeremy W. F. Morris, Ph.D. [email protected]
P.E.
Principal, Geosyntec Consultants, 1220 19th St. NW, Suite 210, Washington, DC 20036. Email: [email protected]
Ranjiv Gupta, Ph.D., M.ASCE [email protected]
P.E.
Senior Engineer, Freeport McMoRan, 333 N. Central Ave., Phoenix, AZ 85004. Email: [email protected]
P.E.
Professor and Department Chair, Dept. of Structural Engineering, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0085 (corresponding author). ORCID: https://orcid.org/0000-0003-2109-0378. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share