Technical Papers
Jul 10, 2020

Analytical Solutions for Heat Transfer in Saturated Soil with Effective Porosity

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 9

Abstract

Closed-form analytical solutions are presented for one-dimensional heat transfer through saturated soil with effective porosity and steady fluid flow. The solutions yield distributions of temperature and total heat flux for both transient and steady-state conditions within a soil block having constant temperature boundaries. The analysis adopts a series–parallel approach for heat transfer and accounts for advection, conduction, and thermal mechanical dispersion assuming local thermal equilibrium between solid and fluid phases. Solutions are first developed and experimental data are provided to highlight the significance of effective porosity with regard to soil thermal conductivity. Numeric examples are presented to illustrate the effects of the thermal Peclet number, thermal dispersivity, and effective porosity on heat transfer behavior. Depending on conditions, each parameter can affect heat transfer in saturated soil significantly. The solutions also demonstrate the requisite uniqueness when cast in terms of dimensionless parameters.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request (data).

Acknowledgments

Financial support for this investigation was provided by Grant No. CMMI-1622781 from the US National Science Foundation and is gratefully acknowledged.

References

Abdelhadi, O. N., and J. K. Mitchell. 1981. “Coupled heat and water flows around buried cables.” J. Geotech. Eng. Div. 107 (11): 1461–1487.
Abuel-Naga, H. M., D. T. Bergado, and A. Bouazza. 2008. “Thermal conductivity evolution of saturated clay under consolidation process.” Int. J. Geomech. 8 (2): 114–122. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(114).
Al-Nimr, M. A., and B. A. Abu-Hijleh. 2002. “Validation of thermal equilibrium assumption in transient forced convection flow in porous channel.” Transp. Porous Media 49 (2): 127–138. https://doi.org/10.1023/A:1016072713296.
Anderson, M. P. 2005. “Heat as a ground water tracer.” Ground Water 43 (6): 951–968. https://doi.org/10.1111/j.1745-6584.2005.00052.x.
Aschonitis, V. G., and V. Z. Antonopoulos. 2013. “New equations for the determination of soil saturated hydraulic conductivity using the van Genuchten model parameters and effective porosity.” Irrig. Drain. 62 (4): 537–542. https://doi.org/10.1002/ird.1751.
Başer, T., Y. Dong, A. M. Moradi, N. Lu, K. Smits, S. Ge, D. Tartakovsky, and J. S. McCartney. 2018. “Role of nonequilibrium water vapor diffusion in thermal energy storage systems in the vadose zone.” J. Geotech. Geoenviron. Eng. 144 (7): 04018038. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001910.
Bear, J. 1972. Dynamics of fluids in porous media. New York: Elsevier.
Brandl, H. 2006. “Energy foundations and other thermo-active ground structures.” Géotechnique 56 (2): 81–122. https://doi.org/10.1680/geot.2006.56.2.81.
Brandon, T. L., J. K. Mitchell, and J. T. Cameron. 1989. “Thermal instability in buried cable backfills.” J. Geotech. Eng. 115 (1): 38–55. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:1(38).
Côté, J., and J.-M. Konrad. 2005. “A generalized thermal conductivity model for soils and construction materials.” Can. Geotech. J. 42 (2): 443–458. https://doi.org/10.1139/t04-106.
Côté, J., and J.-M. Konrad. 2007. “Indirect methods to assess the solid particle thermal conductivity of Quebec marine clays.” Can. Geotech. J. 44 (9): 1117–1127. https://doi.org/10.1139/T07-049.
Dong, Y., J. S. McCartney, and N. Lu. 2015. “Critical review of thermal conductivity models for unsaturated soils.” Geotech. Geol. Eng. 33 (2): 207–221. https://doi.org/10.1007/s10706-015-9843-2.
Faizal, M., A. Bouazza, C. Haberfield, and J. S. McCartney. 2018. “Axial and radial thermal responses of a field-scale energy pile under monotonic and cyclic temperature changes.” J. Geotech. Geoenviron. Eng. 144 (10): 04018072. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001952.
Fetter, C. W. 1993. Contaminant hydrogeology. New York: Maxwell Macmillan International.
Gao, Z. Q., X. G. Fan, and L. G. Bian. 2003. “An analytical solution to one-dimensional thermal conduction-convection in soil.” Soil Sci. 168 (2): 99–107. https://doi.org/10.1097/00010694-200302000-00004.
Gera, F., T. Hueckel, and A. Peano. 1996. “Critical issues in modelling the long-term hydro-thermomechanical performance of natural clay barriers.” Eng. Geol. 41 (1–4): 17–33. https://doi.org/10.1016/0013-7952(95)00047-X.
Hatch, C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C. Ruehl. 2006. “Quantifying surface water-groundwater interactions using time series analysis of streambed thermal records: Method development.” Water Resour. Res. 42 (10): W10410. https://doi.org/10.1029/2005WR004787.
Hoor, A., and R. K. Rowe. 2013. “Potential for desiccation of geosynthetic clay liners used in barrier systems.” J. Geotech. Geoenviron. Eng. 139 (10): 1648–1664. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000899.
Jaynes, D. B., S. D. Logsdon, and R. Horton. 1995. “Field method for measuring mobile immobile water-content and solute transfer rate coefficient.” Soil Sci. Soc. Am. J. 59 (2): 352–356. https://doi.org/10.2136/sssaj1995.03615995005900020012x.
Kaviany, M. 2002. Principles of heat transfer, 973. New York: Wiley.
Khashan, S. A., A. M. Al-Amiri, and M. A. Al-Nimr. 2005. “Assessment of the local thermal non-equilibrium condition in developing forced convection flows through fluid-saturated porous tubes.” Appl. Therm. Eng. 25 (10): 1429–1445. https://doi.org/10.1016/j.applthermaleng.2004.09.011.
Kim, J. Y., T. B. Edil, and J. K. Park. 1997. “Effective porosity and seepage velocity in column tests on compacted clay.” J. Geotech. Geoenviron. Eng. 123 (12): 1135–1142. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:12(1135).
Kim, S. J., and S. P. Jang. 2002. “Effects of the Darcy number, the Prandtl number, and the Reynolds number on local thermal non-equilibrium.” Int. J. Heat Mass Transfer 45 (19): 3885–3896. https://doi.org/10.1016/S0017-9310(02)00109-6.
Lu, N., and Y. Dong. 2015. “Closed-form equation for thermal conductivity of unsaturated soils at room temperature.” J. Geotech. Geoenviron. Eng. 141 (6): 04015016. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001295.
McCartney, J. S., M. Sánchez, and I. Tomac. 2016. “Energy geotechnics: Advances in subsurface energy recovery, storage, exchange, and waste management.” Comput. Geotech. 75 (May): 244–256. https://doi.org/10.1016/j.compgeo.2016.01.002.
McGaw, R. 1969. Heat conduction in saturated granular materials. Washington, DC: Highway Research Board.
Meegoda, N., and S. Gunasekera. 1992. “A new method to measure the effective porosity of clays.” Geotech. Test. J. 15 (4): 340–351. https://doi.org/10.1520/GTJ10248J.
Mickley, A. S. 1951. “The thermal conductivity of moist soil.” Trans. Am. Inst. Electr. Eng. 70 (2): 1789–1797. https://doi.org/10.1109/T-AIEE.1951.5060631.
Minkowycz, W. J., A. Haji-Sheikh, and K. Vafai. 1999. “On departure from local thermal equilibrium in porous media due to a rapidly changing heat source: The Sparrow number.” Int. J. Heat Mass Transfer 42 (18): 3373–3385. https://doi.org/10.1016/S0017-9310(99)00043-5.
Neaupane, K. M., and P. Nanakorn. 2006. “Coupled heat-deformation-flow analysis for clayey soil.” J. Geotech. Geoenviron. Eng. 132 (4): 521–525. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:4(521).
Ngo, C. C., and F. C. Lai. 2009. “Heat transfer analysis of soil heating systems.” Int. J. Heat Mass Transfer 52 (25–26): 6021–6027. https://doi.org/10.1016/j.ijheatmasstransfer.2009.07.011.
Nkedi-Kizza, P., J. W. Biggar, M. T. van Genuchten, P. J. Wierenga, H. M. Selim, J. M. Davidson, and D. R. Nielsen. 1983. “Modeling tritium and chloride 36 transport through an aggregated oxisol.” Water Resour. Res. 19 (3): 691–700. https://doi.org/10.1029/WR019i003p00691.
Ogata, A., and R. B. Banks. 1961. A solution to the differential equation of longitudinal dispersion in porous media: Professional paper no. 411-A, 7. Washington, DC: USGS.
Owen, S. P. 1925. “The distribution of temperature in a column of liquid flowing from a cold source into a receiver maintained at a higher temperature.” Proc. London Math. Soc. 2 (1): 238–249. https://doi.org/10.1112/plms/s2-23.1.238.
Park, J. K., J. Y. Kim, C. D. Madsen, and T. B. Edil. 1997. “Retardation of volatile organic compound movement by a soil-bentonite slurry cutoff wall amended with ground tires.” Water Environ. Res. 69 (5): 1022–1031. https://doi.org/10.2175/106143097X125722.
Rabideau, A., and A. Khandelwal. 1998. “Boundary conditions for modeling transport in vertical barriers.” J. Environ. Eng. 124 (11): 1135–1139. https://doi.org/10.1061/(ASCE)0733-9372(1998)124:11(1135).
Radhakrishna, H. S., K. C. Lau, and A. M. Crawford. 1984. “Coupled heat and moisture flow through soils.” J. Geotech. Eng. 110 (12): 1766–1784. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:12(1766).
Rowe, R. K., C. B. Lake, and R. J. Petrov. 2000. “Apparatus and procedures for assessing inorganic diffusion coefficients for geosynthetic clay liners.” Geotech. Test. J. 23 (2): 206–214. https://doi.org/10.1520/GTJ11045J.
Sellin, P., and O. X. Leupin. 2013. “The use of clay as an engineered barrier in radioactive-waste management—A review.” Clays Clay Miner. 61 (6): 477–498. https://doi.org/10.1346/CCMN.2013.0610601.
Shackelford, C. D. 1995. “Cumulative mass approach for column testing.” J. Geotech. Eng. 121 (10): 696–703. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:10(696).
Shackelford, C. D., and S. M. Moore. 2013. “Fickian diffusion of radionuclides for engineered containment barriers: Diffusion coefficients, porosities, and complicating issues.” Eng. Geol. 152 (1): 133–147. https://doi.org/10.1016/j.enggeo.2012.10.014.
Shao, M. G., R. Horton, and D. B. Jaynes. 1998. “Analytical solution for one-dimensional heat conduction-convection equation.” Soil Sci. Soc. Am. J. 62 (1): 123–128. https://doi.org/10.2136/sssaj1998.03615995006200010016x.
Stephens, D. B., K. C. Hsu, M. A. Prieksat, M. D. Ankeny, N. Blandford, T. L. Roth, J. A. Kelsey, and J. R. Whitworth. 1998. “A comparison of estimated and calculated effective porosity.” Hydrogeol. J. 6 (1): 156–165. https://doi.org/10.1007/s100400050141.
Tarnawski, V. R., and W. H. Leong. 2012. “A series-parallel model for estimating the thermal conductivity of unsaturated soils.” Int. J. Thermophys. 33 (7): 1191–1218. https://doi.org/10.1007/s10765-012-1282-1.
Tarnawski, V. R., T. Momose, and W. H. Leong. 2011. “Thermal conductivity of standard sands. II: Saturated conditions.” Int. J. Thermophys. 32 (5): 984. https://doi.org/10.1007/s10765-011-0975-1.
Vandenbohede, A., and L. Lebbe. 2010. “Parameter estimation based on vertical heat transport in the surficial zone.” Hydrogeol. J. 18 (4): 931–943. https://doi.org/10.1007/s10040-009-0557-5.
van Genuchten, M. T., and P. Wierenga. 1977. “Mass transfer studies in sorbing porous media. II: Experimental evaluation with tritium (3H2O).” Soil Sci. Soc. Am. J. 41 (2): 272–278. https://doi.org/10.2136/sssaj1977.03615995004100020022x.
Verkhovets, I. A., N. P. Chizhikova, and A. S. Vladychenskii. 2006. “Mineralogical composition of silt fractions and its transformation under the impact of different cenoses in model lysimeters.” Eurasian Soil Sci. 39 (5): 528–538. https://doi.org/10.1134/S1064229306050103.
Wang, F. Q. 2014. “Ray-thermal sequential coupled heat transfer analysis of porous media receiver for solar dish collector.” Appl. Mech. Mater. 442: 169–175. https://doi.org/10.4028/www.scientific.net/AMM.442.169.
Wang, L. L., Z. Q. Gao, R. Horton, D. H. Lenschow, K. Meng, and D. B. Jaynes. 2012. “An analytical solution to the one-dimensional heat conduction-convection equation in soil.” Soil Sci. Soc. Am. J. 76 (6): 1978–1986. https://doi.org/10.2136/sssaj2012.0023N.
Waples, D. W., and J. S. Waples. 2004. “A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks.” Nat. Resour. Res. 13 (2): 97–122. https://doi.org/10.1023/B:NARR.0000032647.41046.e7.
Woodside, W., and J. H. Messmer. 1961. “Thermal conductivity of porous media. I: Unconsolidated sands.” J. Appl. Phys. 32 (9): 1688–1699. https://doi.org/10.1063/1.1728419.
Yang, C., and A. Nakayama. 2010. “A synthesis of tortuosity and dispersion in effective thermal conductivity of porous media.” Int. J. Heat Mass Transfer 53 (15–16): 3222–3230. https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.004.
Yao, J., and W. J. Likos. 2018. “Thermal conductivity of unsaturated sands at moderately elevated temperatures (25°C to 75°C).” In Proc., IFCEE 2018, 321–331. Reston, VA: ASCE.
Yeşiller, N., J. L. Hanson, N. K. Oettle, and W.-L. Liu. 2008. “Thermal analysis of cover systems in municipal solid waste landfills.” J. Geotech. Geoenviron. Eng. 134 (11): 1655–1664. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:11(1655).
Zhang, N., and Z. Y. Wang. 2017. “Review of soil thermal conductivity and predictive models.” Int. J. Therm. Sci. 117 (Jul): 172–183. https://doi.org/10.1016/j.ijthermalsci.2017.03.013.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 9September 2020

History

Received: Dec 16, 2019
Accepted: Apr 3, 2020
Published online: Jul 10, 2020
Published in print: Sep 1, 2020
Discussion open until: Dec 10, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Graduate Research Assistant, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802 (corresponding author). ORCID: https://orcid.org/0000-0003-4207-3497. Email: [email protected]
Patrick J. Fox, F.ASCE [email protected]
Shaw Professor and Head, Dept. of Civil and Environmental Engineering, Pennsylvania State Univ., University Park, PA 16802. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share