Technical Notes
Jun 27, 2020

Data Compilation from Large Drained Compression Triaxial Tests on Coarse Crushable Rockfill Materials

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 9

Abstract

Investigating the mechanical properties of rockfills requires laborious, time-consuming, and expensive large-scale testing. Therefore, practitioners frequently adopt design parameters based on a limited number of reports with experimental results. With the aim of enlarging and consolidating the database on the mechanical behavior of coarse rockfills, this paper compiles 158 drained triaxial compression tests conducted on 33 different materials, performed on samples 1  m in diameter and having a maximum particle size between 100 and 200 mm. Data are analyzed in terms of particle breakage, shear strength, and stiffness. The results are compared with limits for high and low shear strength previously reported. At confining pressures lower than 0.2 MPa, rockfills consistently have a maximum internal friction angle higher than 45°; at high pressure, this value decreases to a range between 30° and 40°, mainly due to degradation caused by particle breakage. Average secant Young’s moduli for all uniform and well-graded rockfills analyzed are in the typical range for loose sands, characterized by a normalized secant modulus of 100 to 200.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Compiled and new data on rockfill materials supporting this paper are available at https://doi.org/10.5281/zenodo.3625778.

Acknowledgments

The authors gratefully acknowledge Fortescue Metals Group Ltd (Australia), Conseil Général du Gard (France), and Ecole Centrale of Lyon (leader of French ANR PEDRA project) for permission to publish the results of testing on rockfill materials. The first author acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC) [funding reference number RGPIN-2019-06118]. The second author acknowledges the support of SRK Consulting (Australasia) Pty Ltd and the University of Newcastle (Australia).

References

Al-Hussaini, M. 1983. “Effect of particle size and strain conditions on the strength of crushed basalt.” Can. Geotech. J. 20 (4): 706–717. https://doi.org/10.1139/t83-077.
Alonso, E., E. Romero, and E. Ortega. 2016. “Yielding of rockfill in relative humidity controlled triaxial experiments.” Acta Geotech. 11 (3): 455–477. https://doi.org/10.1007/s11440-016-0437-9.
Bard, E., M. Anabalon, and J. Campaña. 2012. “Waste rock behavior at high pressures: Dimensioning high waste rock dumps.” In Multiscale geomechanics, edited by P.-Y. Hicher, 86–112. London: ISTE/Wiley.
Barton, N., and B. Kjaernsli. 1981. “Shear strength of rockfills.” J. Geotech. Eng. Div. 107 (7): 873–891.
Becker, E., C. K. Chan, and H. B. Seed. 1972. Strength and deformation characteristics of rockfill materials in plane strain and triaxial compression tests. Berkeley, CA: Dept. of Civil Engineering, Univ. of California, Berkeley.
Besio, G. 2012. “Uso del método de curvas homotéticas en la representación de ensayos monotónicos y cíclicos en suelos gruesos.” [In Spanish.] M.Sc. thesis, Departamento De Ingeniería Civil, Universidad de Chile.
Biarez, J., and P.-Y. Hicher. 1994. Elementary mechanics of soil behavior. Rotterdam, Netherlands: A. A. Balkema.
Biarez, J., and P.-Y. Hicher. 1997. “Influence de la granulométrie et de son évolution par ruptures de grains sur le comportement mécanique de matériaux granulaires.” Revue Française de Génie Civil 1 (4): 607–631. https://doi.org/10.1080/12795119.1997.9692147.
Bolton, M. 1986. “The strength and dilatancy of sands.” Géotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Charles, J., and K. Watts. 1980. “The influence of confining pressure on the shear strength of compacted rockfill.” Géotechnique 30 (4): 353–367. https://doi.org/10.1680/geot.1980.30.4.353.
Chávez, C., and E. Alonso. 2003. “A constitutive model for crushed granular aggregates which includes suction effects.” Soils Found. 43 (4): 215–227. https://doi.org/10.3208/sandf.43.4_215.
Contreras, L. 2011. “Comportamiento friccionante de materiales granulares gruesos.” [In Spanish.] M.Sc. thesis, Departamento De Ingeniería Civil, Universidad de Chile.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Géotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Dano, C., C. Ovalle, Z. Yin, A. Daouadji, and P.-Y. Hicher. 2018. “Behavior of granular materials affected by grain breakage.” In Advances in multi-physics and multi-scale couplings in geo-environmental mechanics. 1st ed., edited by F. Nicot and O. Millet, 95–132. London: ISTE Press.
Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. “Modelling grain breakage influence on mechanical behaviour of granular media.” Eur. J. Mech. A. Solids 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
De La Hoz, K. 2007. “Estimación de los parámetros de resistencia al corte en suelos granulares gruesos.” [In Spanish.] M.Sc. thesis, Departamento De Ingeniería Civil, Universidad de Chile.
Dorador, L. 2010. “Análisis experimental de las metodologías de curvas homotéticas y corte en la evaluación de propiedades geotécnicas de suelos.” [In Spanish.] M.Sc. thesis, Departamento De Ingeniería Civil, Universidad de Chile.
Estaire, J., and C. Olalla. 2006. “Análisis de la resistencia de escolleras mediante ensayos de corte directo en caja de 1×1  m2.” Ingeniería Civil 144: 73–79.
Frossard, E., W. Hu, C. Dano, and P.-Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Géotechnique 62 (5): 415–428. https://doi.org/10.1680/geot.10.P.079.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Holtz, W., and H. Gibbs. 1956. “Triaxial shear tests on previous gravelly soils.” Supplement, J. Soil Mech. Found. Div. 82 (SM1): 1–22.
Hu, W., C. Dano, P.-Y. Hicher, J.-Y. Le Touzo, F. Derkx, and E. Merliot. 2011. “Effect of sample size on the behavior of granular materials.” Geotech. Test. J. 34 (3): 186–197. https://doi.org/10.1520/GTJ103095.
Hunter, G., and R. Fell. 2003. “Rockfill modulus and settlement of concrete face rockfill dams.” J. Geotech. Geoenviron. Eng. 129 (10): 909–917. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(909).
Indraratna, B., D. Ionescu, and H. D. Christie. 1998. “Shear behavior of railway ballast based on large-scale triaxial tests.” J. Geotech. Geoenviron. Eng. 124 (5): 439–449. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(439).
Indraratna, B., L. Wijewardena, and A. Balasubramaniam. 1993. “Large-scale triaxial testing of greywacke rockfill.” Géotechnique 43 (1): 539–543. https://doi.org/10.1680/geot.1994.44.3.539.
Kermani, M., J.-M. Konrad, and M. Smith. 2018. “In situ short-term and long-term rockfill compressibility as a function of void ratio and strength of parent rock.” J. Geotech. Geoenviron. Eng. 144 (4): 04018009. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001835.
Lade, P., J. Yamamuro, and P. Bopp. 1996. “Significance of particle crushing in granular materials.” J. Geotech. Eng. 122 (4): 309–316. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:4(309).
Lee, D. M. 1992. “The angles of friction of granular fills.” Ph.D. thesis, Churchill College, Univ. of Cambridge.
Lee, K., and H. B. Seed. 1967. “Drained strength characteristics of sands.” Supplement, J. Soil Mech. Foud. Div. 93 (SM6): 117–141.
Leps, T. M. 1970. “Review of shearing strength of rockfill.” J. Soil Mech. Found. Div. 96 (4): 1159–1170.
Leussink, H. 1960. Vol. 1. of Bau eines grossen dreiaxialen shergerätes zur untersuchung grobkörniger erdstoffe (Design of a large triaxial shear apparatus for investigating coarse grained soils). Karlsruhe, Germany: Soil Mechanics Institute of the Karlsruhe Technical Univ.
Lim, W. L., G. R. McDowell, and A. C. Collop. 2004. “The application of Weibull statistics to the strength of railway ballast.” Granular Matter 6 (4): 229–237. https://doi.org/10.1007/s10035-004-0180-z.
Linero, S., C. Palma, and R. Apablaza. 2007. “Geotechnical characterization of waste material in very high dumps with large scale triaxial testing.” In Proc., Int. Symp. on Rock Slope Stability in Open Pit Mining and Civil Engineering, 59–75. Perth, Australia: Australian Centre for Geomechanics.
Lo, K. Y., and M. Roy. 1973. “Response of particulate materials at high pressures.” Soils Found. 13 (1): 61–76. https://doi.org/10.3208/sandf1972.13.61.
Marachi, N. D., C. K. Chan, H. B. Seed, and J. M. Duncan. 1969. Strength and deformation characteristics of rockfills materials. Berkeley, CA: Dept. of Civil Engineering, Univ. of California, Berkeley.
Marsal, R. 1967. “Large-scale testing of rockfill materials.” J. Soil Mech. Found. Div. 93 (2): 27–43.
Marsal, R. 1973. “Mechanical properties of rockfill dams.” In Embankment-dam engineering: Casagrande Volumen, edited by R. Hirschfeld and S. Poulos, 454. New York: Wiley.
Marsal, R., E. Moreno, A. Nuñez, and R. Moreno. 1965. Research on the behaviour of granular materials and rockfill samples. Mexico City, Mexico: Comisión Federal de Electricidad de México.
Matsuoka, H., and S. Liu. 1998. “Simplified direct box shear test on granular materials and its application to rockfill materials.” Soils Found. 38 (4): 275–284. https://doi.org/10.3208/sandf.38.4_275.
Matsuoka, H., S. Liu, D. Sun, and U. Nishikata. 2001. “Development of a new in-situ direct shear test.” Geotech. Test. J. 24 (1): 92–102. https://doi.org/10.1520/GTJ11285J.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Géotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Oldecop, L., and E. Alonso. 2003. “Suction effects on rockfill compressibility.” Géotechnique 53 (2): 289–292. https://doi.org/10.1680/geot.2003.53.2.289.
Ovalle, C. 2013. “Contribution à l’étude de la rupture des grains dans les matériaux granulaires.” [In French.] Doctoral thesis, Ecole Centrale de Nantes.
Ovalle, C. 2018. “Role of particle breakage in primary and secondary compression of wet and dry sand.” Géotech. Lett. 8 (2): 161–164. https://doi.org/10.1680/jgele.18.00047.
Ovalle, C., and C. Dano. 2020. “Effects of particle size–strength and size–shape correlations on parallel grading scaling.” Géotech. Lett. 10 (2): 1–7. https://doi.org/10.1680/jgele.19.00095.
Ovalle, C., C. Dano, and P.-Y. Hicher. 2013. “Experimental data highlighting the role of surface fracture energy in quasi-static confined comminution.” Int. J. Fract. 182 (1): 123–130. https://doi.org/10.1007/s10704-013-9833-4.
Ovalle, C., C. Dano, P.-Y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52 (5): 587–598. https://doi.org/10.1139/cgj-2014-0079.
Ovalle, C., E. Frossard, C. Dano, W. Hu, S. Maiolino, and P.-Y. Hicher. 2014. “The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data.” Acta Mech. 225 (8): 2199–2216. https://doi.org/10.1007/s00707-014-1127-z.
Ovalle, C., and P.-Y. Hicher. 2020. “Modeling the effect of wetting on the mechanical behavior of crushable granular materials.” Geosci. Front. 11 (2): 487–494. https://doi.org/10.1016/j.gsf.2019.06.009.
Ovalle, C., C. Voivret, C. Dano, and P.-Y. Hicher. 2016. “Population balance in confined comminution using a physical based probabilistic approach for polydisperse granular materials.” Int. J. Numer. Anal. Methods Geomech. 40 (17): 2383–2397. https://doi.org/10.1002/nag.2534.
Palma, C., S. Linero, and R. Apablaza. 2009. “Caracterización geotécnica de materiales de lastre en botaderos de gran altura mediante ensayos triaxiales y odométricos de gran tamaño.” In Proc., Desafíos y avances de la geotecnia joven en Sudamérica, Memorias de la III Conferencia Sudamericana de Ingenieros Geotécnicos Jóvenes, edited by F. M. Francisca, 201–204. Córdoba, Argentina: Alejandria.
Raymond, G. P., and J. R. Davies. 1978. “Triaxial tests on dolomite railroad ballast.” J. Geotech. Eng. Div. 104 (6): 737–751.
Schanz, T., and P. Vermeer. 1996. “Angles of friction and dilatancy of sand.” Géotechnique 46 (1): 145–151. https://doi.org/10.1680/geot.1996.46.1.145.
Schanz, T., and P. Vermeer. 1998. “On the stiffness of sand.” In Pre-failure deformation behaviour of geomaterials, edited by R. J. Jardine, 383–387. London: Institution of Civil Engineers.
Schanz, T., P. Vermeer, and P. Bonnier. 1999. “The hardening soil model: Formulation and verification.” In Beyond 2000 in computational geotechnics—10 years of plaxis, edited by R. Brinkgreve, 281–296. Rotterdam, Netherlands: Balkema.
Varadarajan, A., K. Sharma, K. Venkatachalam, and K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Verdugo, R., and K. De la Hoz. 2006. “Strength and stiffness of coarse granular soils.” In Soil stress-strain behavior: Measurement, modeling and analysis, edited by H. I. Ling, 243–252. Dordrecht, Netherlands: Springer.
Vesic, A. S., and G. W. Clough. 1968. “Behavior of granular materials under high stresses.” Supplement, J. Soil Mech. Found. Div. 94 (SM3): 661–688.
Weibull, W. 1939. “A statistical theory of the strength of materials.” Proc. R. Swedish Inst. Eng. Res. 151: 1–53.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014a. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng. 140 (12): 04014070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014b. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage.” J. Geotech. Geoenviron. Eng. 140 (12): 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.
Xiao, Y., H. Liu, C. S. Desai, Y. Sun, and H. Liu. 2015. “Effect of intermediate principal-stress ratio on particle breakage of rockfill material.” J. Geotech. Geoenviron. Eng. 142 (4): 06015017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001433.
Yamamuro, J., and P. Lade. 1996. “Drained sand behavior in axisymmetric tests at high pressures.” J. Geotech. Eng. 122 (2): 109–119. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(109).
Yin, Z.-Y., P.-Y. Hicher, C. Dano, and Y.-F. Jin. 2017. “Modeling mechanical behavior of very coarse granular materials.” J. Eng. Mech. 143 (1): C4016006. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001059.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 9September 2020

History

Received: Aug 30, 2019
Accepted: Mar 18, 2020
Published online: Jun 27, 2020
Published in print: Sep 1, 2020
Discussion open until: Nov 27, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

Assistant Professor, Dept. of Civil, Geological and Mining Engineering, Polytechnique Montreal, 2900 Edouard Montpetit Blvd., Montreal, QC, Canada H3T1J4; Research Institute of Mining and Environment, RIME UQAT-Polytechnique, 2900 Edouard Montpetit Blvd., Montreal, QC, Canada H3T1J4 (corresponding author). ORCID: https://orcid.org/0000-0002-9648-5262. Email: [email protected]
Sandra Linero
Principal Geotechnical Engineer, SRK Consulting (Australasia) Pty Ltd., Level 17, 44 Market St., Sydney, NSW 2000, Australia.
Christophe Dano
Associate Professor, Centre National de la Recherche Scientifique, Institut National Polytechnique, Univ. Grenoble–Alpes, 3SR, 1270 rue de la piscine, Domaine Universitaire, Grenoble 38000, France.
Edgar Bard
Senior Mine Waste Consultant, Golder Associates, 181 Magdalena, Las Condes 7550055, Chile.
Pierre-Yves Hicher
Emeritus Professor, Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Ecole Centrale de Nantes, 1 Rue de la Noë, Nantes 44300, France.
Rodrigo Osses
Ph.D. Candidate, Dept. of Structural and Geotechnical Engineering, Pontificia Universidad Católica de Chile, 4860 Av. Vicuña Mackenna, Macul 7820436, Chile; Facultad de Ingeniería y Ciencias, Departamento de Ingeniería de Obras Civiles, Universidad de La Frontera, 1145 Francisco Salazar, Temuco 4811230, Chile.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share