Technical Papers
May 14, 2020

Effect of Particle Shape on Constitutive Relation: DEM Study

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 146, Issue 7

Abstract

The influence of particle shape was evaluated under drained and undrained (constant volume) condition using three-dimensional (3D) cubical assemblies of spheres, ellipsoids, and cluster of spheres (a combination of seven spheres with two different degrees of overlap) with same particle size distribution. It was found that the peak deviatoric stress, the minimum dilatancy (d=dεvp/dεqp), corresponding stress ratio (ηdmin), the bounding surface dilatancy model, and the location of the critical state line (CSL) both in the e-log(p) and the q-p space were influenced by particle shape. Therefore, four corresponding sets of constitutive parameters for four different particle shapes were implemented in a bounding surface model to predict both drained and undrained (constant volume) discrete element method (DEM) simulation. Good prediction, irrespective of particle shape, indicates that the observed DEM behavior can be adequately captured by the theories of continuum mechanics. Importantly, the majority of the constitutive parameters were influenced by particle shape and can be correlated with simple shape descriptor of sphericity.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Data generated or analyzed during the study are available from the corresponding author by request.

Acknowledgments

The first author of this paper would like to acknowledge the University of South Australia President’s Scholarship and the University of South Australia Postgraduate Research Award during his Ph.D. to make this research possible.

References

Altuhafi, F., C. O’Sullivan, and I. Cavarretta. 2013. “Analysis of an image-based method to quantify the size and shape of sand particles.” J. Geotech. Geoenviron. Eng. 139 (8): 1290–1307. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000855.
Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
Azéma, E., F. Radjai, and F. Dubois. 2013a. “Packings of irregular polyhedral particles: Strength, structure, and effects of angularity.” Phys. Rev. E 87 (6): 062203. https://doi.org/10.1103/PhysRevE.87.062203.
Azéma, E., F. Radjai, and G. Saussine. 2009. “Quasistatic rheology, force transmission and fabric properties of a packing of irregular polyhedral particles.” Mech. Mater. 41 (6): 729–741. https://doi.org/10.1016/j.mechmat.2009.01.021.
Azéma, E., F. Radjaï, B. Saint-Cyr, J.-Y. Delenne, and P. Sornay. 2013b. “Rheology of three-dimensional packings of aggregates: Microstructure and effects of nonconvexity.” Phys. Rev. E 87 (5): 052205. https://doi.org/10.1103/PhysRevE.87.052205.
Barnett, N., M. M. Rahman, M. R. Karim, H. B. K. Nguyen, and J. A. H. Carraro. 2020. “Equivalent state theory for mixtures of sand with non-plastic fines: A DEM investigation.” Géotechnique. 1–18. https://doi.org/10.1680/jgeot.19.P.103.
Been, K., M. Jefferies, and J. Hachey. 1991. “The critical state of sands.” Géotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Géotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Bowman, E. T., K. Soga, and W. Drummond. 2001. “Particle shape characterisation using Fourier descriptor analysis.” Géotechnique 51 (6): 545–554. https://doi.org/10.1680/geot.2001.51.6.545.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Clark, N. N. 1986. “Three techniques for implementing digital fractal analysis of particle shape.” Powder Technol. 46 (1): 45–52. https://doi.org/10.1016/0032-5910(86)80097-3.
Cubrinovski, M., and K. Ishihara. 2002. “Maximum and minimum void ratio characteristics of sands.” Soils Found. 42 (6): 65–78. https://doi.org/10.3208/sandf.42.6_65.
de Bono, J. P., and G. R. McDowell. 2016. “Investigating the effects of particle shape on normal compression and overconsolidation using DEM.” Granular Matter 18 (3): 55. https://doi.org/10.1007/s10035-016-0605-5.
Ehrlich, R., and B. Weinberg. 1970. “An exact method for characterization of grain shape.” J. Sediment. Petrol. 40 (1): 205–212. https://doi.org/10.1306/74D71F1E-2B21-11D7-8648000102C1865D.
Frossard, E. 1979. “Effect of sand grain shape on interparticle friction; indirect measurements by Rowe’s stress dilatancy theory.” Géotechnique 29 (3): 341–350. https://doi.org/10.1680/geot.1979.29.3.341.
Gong, J., Z. Nie, Y. Zhu, Z. Liang, and X. Wang. 2019. “Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM.” Comput. Geotech. 106 (Feb): 161–176. https://doi.org/10.1016/j.compgeo.2018.10.021.
Goudarzy, M., N. Rahemi, M. M. Rahman, and T. Schanz. 2017. “Predicting the maximum shear modulus of sands containing nonplastic fines.” J. Geotech. Geoenviron. Eng. 143 (9): 06017013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001760.
Goudarzy, M., M. M. Rahman, D. König, and T. Schanz. 2016. “Influence of non-plastic fines content on maximum shear modulus of granular materials.” Soils and Found. 56 (6): 973–983. https://doi.org/10.1016/j.sandf.2016.11.003.
Hardin, B. O., and F. E. J. Richart. 1963. “Elastic wave velocities in granular soils.” J. Soil Mech. Found. Div. 89 (1): 33–36. https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0013008.
Huang, X., C. O’Sullivan, K. Hanley, and C. Kwok. 2014. “Discrete-element method analysis of the state parameter.” Géotechnique 64 (12): 954–965. https://doi.org/10.1680/geot.14.P.013.
Iwasaki, T., and F. Tatsuoka. 1977. “Effects of grain size and grading on dynamic shear moduli of sands.” Soils Found 17 (3): 19–35. https://doi.org/10.3208/sandf1972.17.3_19.
Jensen, R. P., T. B. Edil, P. J. Bosscher, M. E. Plesha, and N. B. Kahla. 2001. “Effect of Particle Shape on Interface Behavior of DEM-Simulated Granular Materials.” Int. J. Geomech. 1 (1): 1–19. https://doi.org/10.1061/(ASCE)1532-3641(2001)1:1(1).
Konrad, J. 1993. “Undrained response of loosely compacted sands during monotonic and cyclic compression tests.” Géotechnique 43 (1): 69–89. https://doi.org/10.1680/geot.1993.43.1.69.
Konrad, J.-M. 1998. “Sand state from cone penetrometer tests: A framework considering grain crushing stress.” Géotechnique 48 (2): 201–215.
Krumbein, W. C., and L. L. Sloss. 1963. Stratigraphy and sedimentation. San Francisco: W. H. Freeman and Company.
Kuhn, M. R. 2006. OVAL and OVALPLOT: Programs for analyzing dense particle assemblies with the discrete element method. Portland, OR: Univ. of Portland.
Kuhn, M. R. 2016. “The critical state of granular media: convergence, stationarity and disorder.” Géotechnique 66 (11): 902–909.
Li, X. S., and Y. F. Dafalias. 2000. “Dilatancy for cohesionless soils.” Géotechnique 50 (4): 449–460. https://doi.org/10.1680/geot.2000.50.4.449.
Li, X. S., and Y. F. Dafalias. 2012. “Anisotropic critical state theory: Role of fabric.” J. Eng. Mech. 138 (3): 263–275. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000324.
Li, X.-S., and Y. Wang. 1998. “Linear representation of steady-state line for sand.” J. Geotech. Geoenviron. Eng. 124 (12): 1215–1217. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1215).
Lopera Perez, J. C., C. Y. Kwok, C. O’Sullivan, X. Huang, and K. J. Hanley. 2016. “Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework.” Soils Found. 56 (1): 152–159. https://doi.org/10.1016/j.sandf.2016.01.013.
Moore, C. A., and C. F. Donaldson. 1995. “Quantifying soil microstructure using fractals.” Géotechnique 45 (1): 105–116. https://doi.org/10.1680/geot.1995.45.1.105.
Ng, T.-T. 1994. “Numerical simulations of granular soil using elliptical particles.” Comput. Geotech. 16 (2): 153–169.
Ng, T.-T., W. Zhou, and X.-L. Chang. 2017. “Effect of particle shape and fine content on the behavior of binary mixture.” J. Eng. Mech. 143 (1): C4016008. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001070.
Nguyen, H. B. K., and M. M. Rahman. 2017. “The role of micro-mechanics on the consolidation history of granular materials.” Aust. Geomech. 52 (3): 27–36.
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2017. “Undrained behaviour of granular material and the role of fabric in isotropic and K0 consolidations: DEM approach.” Géotechnique 67 (2): 153–167. https://doi.org/10.1680/jgeot.15.P.234.
Nguyen, H. B. K., M. M. Rahman, and A. B. Fourie. 2018. “Characteristic behaviour of drained and undrained triaxial tests: A DEM study.” J. Geotech. Geoenviron. Eng. 144 (9): 04018060. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001940.
Nouguier-Lehon, C., B. Cambou, and E. Vincens. 2003. “Influence of particle shape and angularity on the behaviour of granular materials: A numerical analysis.” Int. J. Numer. Anal. Methods Geomech. 27 (14): 1207–1226. https://doi.org/10.1002/nag.314.
Orford, J. D., and W. B. Whalley. 1983. “The use of the fractal dimension to quantify the morphology of irregular-shaped particles.” Sedimentology 30 (5): 655–668. https://doi.org/10.1111/j.1365-3091.1983.tb00700.x.
Rabbi, A. T. M. Z., M. M. Rahman, and D. A. Cameron. 2018. “Undrained behavior of silty sand and the role of isotropic and K0 consolidation.” J. Geotech. Geoenviron. Eng. 144 (4): 04018014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001859.
Rahman, M. M., M. Cubrinovski, and S. R. Lo. 2012. “Initial shear modulus of sandy soils and equivalent granular void ratio.” Geomech. Geoeng. 7 (3): 219–226. https://doi.org/10.1080/17486025.2011.616935.
Rahman, M. M., S.-C. R. Lo, and Y. F. Dafalias. 2014. “Modelling the static liquefaction of sand with low-plasticity fines.” Géotechnique 64 (11): 881–894. https://doi.org/10.1680/geot.14.P.079.
Rahman, M. M., and S. R. Lo. 2014. “Undrained behaviour of sand-fines mixtures and their state parameters.” J. Geotech. Geoenviron. Eng. 140 (7): 04014036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115.
Rahman, M. M., H. B. K. Nguyen, and A. T. M. Z. Rabbi. 2018. “The effect of consolidation on undrained behaviour of granular materials: A comparative study between experiment and DEM simulation.” Geotech. Res. 5 (4): 199–217. https://doi.org/10.1680/jgere.17.00019.
Rothenburg, L., and R. J. Bathurst. 1989. “Analytical study of induced anisotropy in idealized granular materials.” Géotechnique 39 (4): 601–614. https://doi.org/10.1680/geot.1989.39.4.601.
Rousé, P. C., R. J. Fannin, and D. A. Shuttle. 2008. “Influence of roundness on the void ratio and strength of uniform sand.” Géotechnique 58 (3): 227–231. https://doi.org/10.1680/geot.2008.58.3.227.
Rowe, P. W. 1962. “The stress-dilatancy relation for static equilibrium of an assembly of particles in contact.” In Proc., Royal Soc. London. Ser. A: Math. Phys. Sci. 269 (1339): 500–527.
Schofield, A. N., and P. Wroth. 1968. Critical state soil mechanics. London: McGraw-Hill.
Sitharam, T., and S. Dinesh. 2003. “Numerical simulation of liquefaction behaviour of granular materials using discrete element method.” J. Earth Syst. Sci. 112 (3): 479–484.
Sitharam, T., and J. S. Vinod. 2009. “Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations.” Granular Matter 11 (1): 33–42. https://doi.org/10.1007/s10035-008-0113-3.
Sukumaran, B., and A. Ashmawy. 2001. “Quantitative characterisation of the geometry of discrete particles.” Géotechnique 51 (7): 619–627. https://doi.org/10.1680/geot.2001.51.7.619.
Thornton, C. 2000. “Numerical simulations of deviatoric shear deformation of granular media.” Géotechnique 50 (1): 43–53. https://doi.org/10.1680/geot.2000.50.1.43.
Ting, J. M., M. Khwaja, L. R. Meachum, and J. D. Rowell. 1993. “An ellipse-based discrete element model for granular materials.” Int. J. Numer. Anal. Methods Geomech. 17 (9): 603–623.
Ting, J. M., L. Meachum, and J. D. Rowell. 1995. “Effect of particle shape on the strength and deformation mechanisms of ellipse-shaped granular assemblages.” Eng. Comput. 12 (2): 99–108. https://doi.org/10.1108/02644409510799497.
Vallejo, L. E. 1995. “Fractal analysis of granular materials.” Géotechnique 45 (1): 159–163. https://doi.org/10.1680/geot.1995.45.1.159.
Xie, Y. H., Z. X. Yang, D. Barreto, and M. D. Jiang. 2017. “The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials.” Granular Matter 19 (2): 35. https://doi.org/10.1007/s10035-017-0723-8.
Yan, W., and J. Dong. 2011. “Effect of particle grading on the response of an idealized granular assemblage.” Int. J. Geomech. 11 (4): 276–285.
Yang, J. 2002. “Non-uniqueness of flow liquefaction line for loose sand.” Géotechnique 52 (10): 757–760. https://doi.org/10.1680/geot.2002.52.10.757.
Zhang, J., S.-C. R. Lo, M. M. Rahman, and J. Yan. 2018. “Characterizing monotonic behavior of pond ash within critical state approach.” J. Geotech. Geoenviron. Eng. 144 (1): 04017100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001798.
Zhao, J., and N. Guo. 2013. “Unique critical state characteristics in granular media considering fabric anisotropy.” Géotechnique 63 (8): 695–704. https://doi.org/10.1680/geot.12.P.040.
Zhao, S., T. M. Evans, and X. Zhou. 2018a. “Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils.” Géotechnique 68 (12): 1085–1098. https://doi.org/10.1680/jgeot.17.P.158.
Zhao, S., T. M. Evans, and X. Zhou. 2018b. “Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects.” Int. J. Solids Struct. 150 (Oct): 268–281. https://doi.org/10.1016/j.ijsolstr.2018.06.024.
Zhao, S., and X. Zhou. 2017. “Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies.” Granular Matter 19 (2): 38. https://doi.org/10.1007/s10035-017-0725-6.
Zhao, X., and T. M. Evans. 2011. “Numerical analysis of critical state behaviors of granular soils under different loading conditions.” Granular Matter 13 (6): 751–764. https://doi.org/10.1007/s10035-011-0284-1.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 146Issue 7July 2020

History

Received: Apr 6, 2019
Accepted: Jan 24, 2020
Published online: May 14, 2020
Published in print: Jul 1, 2020
Discussion open until: Oct 14, 2020

Permissions

Request permissions for this article.

Authors

Affiliations

H. B. K. Nguyen, Ph.D. [email protected]
Lecturer, Univ. of South Australia, UniSA STEM, SA 5000, Australia. Email: [email protected]
Associate Professor in Geotechnical Engineering, Univ. of South Australia, UniSA STEM, SA 5000, Australia (corresponding author). ORCID: https://orcid.org/0000-0002-0638-4055. Email: [email protected]
A. B. Fourie [email protected]
Professor, School of Civil, Environmental and Mining Engineering, Univ. of Western Australia, Crawley, WA 6009, Australia. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share