Abstract

The crushing behavior of carbonate sand, due to its porous and fragile structure, exerts a significant influence on the construction of coastal engineering. The collapse of porous material usually produces elastic wave dissipation and force drop in stress-strain curves. To study the acoustic and mechanical characteristics of carbonate sand crushing, both force and acoustic emission (AE) signals were measured as a function of run time in single-particle uniaxial compression tests. Rapid large force drops corresponding to avalanches led to obvious AE signals. The AE signal analysis of carbonate sand was consistent with avalanche statistic laws, e.g., the Gutenberg–Richter law of energies, the double power law distributions of waiting time, the statistics of aftershocks, and Båth’s law. The force drop data also exhibited good power law behavior. Moreover, the Weibull distribution of the peak stress and accumulated energy up to the peak state were established. Although carbonate sand had two failure modes in the experiments, these modes had the same statistical properties in terms of both mechanics and AE.

Get full access to this article

View all available purchase options and get full access to this article.

Data Availability Statement

Some or all data, models, or code generated or used during the study are available from the corresponding author by request.

Acknowledgments

The authors acknowledge the financial support from the 111 Project (Grant No. B13024), the National Science Foundation of China (Grant Nos. 41831282, 51678094, and 51578096), and the Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681). Dr. Evans was supported by the US National Science Foundation (Grant No. CMMI-1538460) during the course of this work. This support is gratefully acknowledged.

References

Aue, J., and J. T. M. De Hosson. 1998. “A study of the mechanical properties of highly porous ceramics using acoustic emission.” J. Mater. Sci. 33 (22): 5455–5462. https://doi.org/10.1023/A:1004470905641.
Bak, P., K. Christensen, L. Danon, and T. Scanlon. 2002. “Unified scaling law for earthquakes.” Phys. Rev. Lett. 88 (17): 178501. https://doi.org/10.1103/PhysRevLett.88.178501.
Bak, P., C. Tang, and K. Wiesenfeld. 1987. “Self-organized criticality: An explanation of the 1/f noise.” Phys. Rev. Lett. 59 (4): 381–384. https://doi.org/10.1103/PhysRevLett.59.381.
Bandini, V., and M. R. Coop. 2011. “The influence of particle breakage on the location of the critical state line of sands.” Soils Found. 51 (4): 591–600. https://doi.org/10.3208/sandf.51.591.
Baro, J., A. Corral, X. Illa, A. Planes, E. K. Salje, W. Schranz, D. E. Soto-Parra, and E. Vives. 2013. “Statistical similarity between the compression of a porous material and earthquakes.” Phys. Rev. Lett. 110 (8): 088702. https://doi.org/10.1103/PhysRevLett.110.088702.
Båth, M. 1965. “Lateral inhomogeneities of the upper mantle.” Tectonophysics 2 (6): 483–514. https://doi.org/10.1016/0040-1951(65)90003-X.
Cavarretta, I., C. O’Sullivan, and M. R. Coop. 2017. “The relevance of roundness to the crushing strength of granular materials.” Geotechnique 67 (4): 301–312. https://doi.org/10.1680/jgeot.15.P.226.
Chen, Q., B. Indraratna, J. P. Carter, and S. Nimbalkar. 2016. “Isotropic-kinematic hardening model for coarse granular soils capturing particle breakage and cyclic loading under triaxial stress space.” Can. Geotech. J. 53 (4): 646–658. https://doi.org/10.1139/cgj-2015-0166.
Clauset, A., C. R. Shalizi, and M. E. J. Newman. 2009. “Power-law distributions in empirical data.” SIAM Rev. 51 (4): 661–703. https://doi.org/10.1137/070710111.
Console, R., A. M. Lombardi, M. Murru, and D. Rhoades. 2003. “Båth’s law and the self-similarity of earthquakes.” J. Geophys. Res.: Solid Earth 108 (B2): 2128. https://doi.org/10.1029/2001JB001651.
Coop, M. R., K. K. Sorensen, T. Bodas Freitas, and G. Georgoutsos. 2004. “Particle breakage during shearing of a carbonate sand.” Geotechnique 54 (3): 157–163. https://doi.org/10.1680/geot.2004.54.3.157.
Corral, Á. 2004. “Universal local versus unified global scaling laws in the statistics of seismicity.” Phys. A: Stat. Mech. Appl. 340 (4): 590–597. https://doi.org/10.1016/j.physa.2004.05.010.
Csikor, F. F., C. Motz, D. Weygand, M. Zaiser, and S. Zapperi. 2007. “Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale.” Science 318 (5848): 251–254. https://doi.org/10.1126/science.1143719.
Daouadji, A., and P.-Y. Hicher. 2010. “An enhanced constitutive model for crushable granular materials.” Int. J. Numer. Anal. Methods Geomech. 34 (6): 555–580. https://doi.org/10.1002/nag.815.
Daouadji, A., P.-Y. Hicher, and A. Rahma. 2001. “An elastoplastic model for granular materials taking into account grain breakage.” Eur. J. Mech. A 20 (1): 113–137. https://doi.org/10.1016/S0997-7538(00)01130-X.
Einav, I. 2007. “Breakage mechanics—Part I: Theory.” J. Mech. Phys. Solids 55 (6): 1274–1297. https://doi.org/10.1016/j.jmps.2006.11.003.
Frette, V., K. Christensen, A. MaltheSorenssen, J. Feder, T. Jossang, and P. Meakin. 1996. “Avalanche dynamics in a pile of rice.” Nature 379 (6560): 49–52. https://doi.org/10.1038/379049a0.
Genç, Ö., L. Ergün, and H. Benzer. 2004. “Single particle impact breakage characterization of materials by drop weight testing.” Physicochem. Probl. Mineral Process. 38 (1): 241–255.
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Helmstetter, A. 2003. “Is earthquake triggering driven by small earthquakes?” Phys. Rev. Lett. 91 (5): 058501. https://doi.org/10.1103/PhysRevLett.91.058501.
Helmstetter, A., and D. Sornette. 2003. “Båth’s law derived from the Gutenberg-Richter law and from aftershock properties.” Geophys. Res. Lett. 30 (20): 2069. https://doi.org/10.1029/2003GL018186.
Hu, W., Z. Yin, C. Dano, and P.-Y. Hicher. 2011. “A constitutive model for granular materials considering grain breakage.” Sci. China Tech. Sci. 54 (8): 2188–2196. https://doi.org/10.1007/s11431-011-4491-0.
Indraratna, B., J. Lackenby, and D. Christie. 2005. “Effect of confining pressure on the degradation of ballast under cyclic loading.” Geotechnique 55 (4): 325–328. https://doi.org/10.1680/geot.2005.55.4.325.
Indraratna, B., and W. Salim. 2002. “Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy.” Geotech. Eng. 155 (4): 243–252. https://doi.org/10.1680/geng.2002.155.4.243.
Jayatilaka, A. D. S., and K. Trustrum. 1977. “Statistical approach to brittle fracture.” J. Mater. Sci. 12 (7): 1426–1430. https://doi.org/10.1007/BF00540858.
Jia, Y., B. Xu, S. Chi, B. Xiang, and Y. Zhou. 2017. “Research on the particle breakage of rockfill materials during triaxial tests.” Int. J. Geomech. 17 (10): 04017085. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000977.
Jiang, D., K. Xie, J. Chen, S. Zhang, W. N. Tiedeu, Y. Xiao, and X. Jiang. 2019. “Experimental analysis of sandstone under uniaxial cyclic loading through acoustic emission statistics.” Pure Appl. Geophys. 176 (1): 265–277. https://doi.org/10.1007/s00024-018-1960-4.
Jiang, X., D. Jiang, J. Chen, and E. K. H. Salje. 2016. “Collapsing minerals: Crackling noise of sandstone and coal, and the predictability of mining accidents.” Am. Mineral. 101 (12): 2751–2758. https://doi.org/10.2138/am-2016-5809CCBY.
Kikumoto, M., D. Muir Wood, and A. Russell. 2010. “Particle crushing and deformation behaviour.” Soils Found. 50 (4): 547–563. https://doi.org/10.3208/sandf.50.547.
Li, G., C. Ovalle, C. Dano, and P. Y. Hicher. 2013. “Influence of grain size distribution on critical state of granular materials.” In Constitutive modeling of geomaterials, 207–210. Berlin: Springer.
Li, J., Y. Huang, Z. Chen, M. Li, M. Qiao, and M. Kizil. 2018. “Particle-crushing characteristics and acoustic-emission patterns of crushing gangue backfilling material under cyclic loading.” Minerals 8 (6): 244. https://doi.org/10.3390/min8060244.
Liu, H., and D. Zou. 2013. “Associated generalized plasticity framework for modeling gravelly soils considering particle breakage.” J. Eng. Mech. 139 (5): 606–615. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000513.
Liu, M., Y. Gao, and H. Liu. 2014. “An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage.” Int. J. Numer. Anal. Methods Geomech. 38 (9): 935–960. https://doi.org/10.1002/nag.2243.
Liu, M., Y. Zhang, and H. Zhu. 2017. “3D elastoplastic model for crushable soils with explicit formulation of particle crushing.” J. Eng. Mech. 143 (12): 04017140. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001361.
McDowell, G. R., and A. Amon. 2000. “The application of Weibull statistics to the fracture of soil particles.” Soils Found. 40 (5): 133–141. https://doi.org/10.3208/sandf.40.5_133.
McDowell, G. R., and M. D. Bolton. 1998. “On the micromechanics of crushable aggregates.” Geotechnique 48 (5): 667–679. https://doi.org/10.1680/geot.1998.48.5.667.
Miao, G., and D. Airey. 2013. “Breakage and ultimate states for a carbonate sand.” Geotechnique 63 (14): 1221–1229. https://doi.org/10.1680/geot.12.P.111.
Mun, W., and J. S. McCartney. 2017. “Roles of particle breakage and drainage in the isotropic compression of sand to high pressures.” J. Geotech. Geoenviron. Eng. 143 (10): 04017071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001770.
Nakata, Y., A. F. L. Hyde, M. Hyodo, and H. Murata. 1999. “A probabilistic approach to sand particle crushing in the triaxial test.” Geotechnique 49 (5): 567–583. https://doi.org/10.1680/geot.1999.49.5.567.
Nataf, G. F., P. O. Castillo-Villa, J. Baro, X. Illa, E. Vives, A. Planes, and E. K. Salje. 2014a. “Avalanches in compressed porous SiO2-based materials.” Phys. Rev. E 90 (2): 022405. https://doi.org/10.1103/PhysRevE.90.022405.
Nataf, G. F., P. O. Castillo-Villa, P. Sellappan, W. M. Kriven, E. Vives, A. Planes, and E. K. Salje. 2014b. “Predicting failure: acoustic emission of berlinite under compression.” J. Phys. Condens. Matter 26 (27): 275401. https://doi.org/10.1088/0953-8984/26/27/275401.
Navas-Portella, V., I. Serra, A. Corral, and E. Vives. 2018. “Increasing power-law range in avalanche amplitude and energy distributions.” Phys. Rev. E 97 (2): 022134. https://doi.org/10.1103/PhysRevE.97.022134.
Pan, X.-H., Q.-Q. Xiong, and Z.-J. Wu. 2018. “New method for obtaining the homogeneity index m of Weibull distribution using peak and crack-damage strains.” Int. J. Geomech. 18 (6): 04018034. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001146.
Russell, A. R. 2011. “A compression line for soils with evolving particle and pore size distributions due to particle crushing.” Geotech. Lett. 1 (1): 5–9. https://doi.org/10.1680/geolett.10.00003.
Sadrekarimi, A., and S. M. Olson. 2011. “Critical state friction angle of sands.” Geotechnique 61 (9): 771–783. https://doi.org/10.1680/geot.9.P.090.
Salim, W., and B. Indraratna. 2004. “A new elastoplastic constitutive model for coarse granular aggregates incorporating particle breakage.” Can. Geotech. J. 41 (4): 657–671. https://doi.org/10.1139/t04-025.
Salje, E. K. H., G. I. Lampronti, D. E. Soto-Parra, J. Baro, A. Planes, and E. Vives. 2013. “Noise of collapsing minerals: Predictability of the compressional failure in goethite mines.” Am. Mineral 98 (4): 609–615. https://doi.org/10.2138/am.2013.4319.
Salje, E. K. H., A. Planes, and E. Vives. 2017. “Analysis of crackling noise using the maximum-likelihood method: Power-law mixing and exponential damping.” Phys. Rev. E 96 (4–1): 042122. https://doi.org/10.1103/PhysRevE.96.042122.
Salje, E. K. H., D. E. Soto-Parra, A. Planes, E. Vives, M. Reinecker, and W. Schranz. 2011. “Failure mechanism in porous materials under compression: crackling noise in mesoporous SiO2.” Philos. Mag. Lett. 91 (8): 554–560. https://doi.org/10.1080/09500839.2011.596491.
Sethna, J. P., K. A. Dahmen, and C. R. Myers. 2001. “Crackling noise.” Nature 410 (6825): 242–250. https://doi.org/10.1038/35065675.
Shahnazari, H., and R. Rezvani. 2013. “Effective parameters for the particle breakage of calcareous sands: An experimental study.” Eng. Geol. 159 (Jun): 98–105. https://doi.org/10.1016/j.enggeo.2013.03.005.
Soto-Parra, D., X. Zhang, S. Cao, E. Vives, E. K. Salje, and A. Planes. 2015. “Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.” Phys. Rev. E 91 (6): 060401. https://doi.org/10.1103/PhysRevE.91.060401.
Tarantino, A., and A. F. L. Hyde. 2005. “An experimental investigation of work dissipation in crushable materials.” Geotechnique 55 (8): 575–584. https://doi.org/10.1680/geot.2005.55.8.575.
Tengattini, A., A. Das, and I. Einav. 2016. “A constitutive modelling framework predicting critical state in sand undergoing crushing and dilation.” Geotechnique 66 (9): 695–710. https://doi.org/10.1680/jgeot.14.P.164.
Ueng, T. S., and T. J. Chen. 2000. “Energy aspects of particle breakage in drained shear of sands.” Geotechnique 50 (1): 65–72. https://doi.org/10.1680/geot.2000.50.1.65.
Utsu, T., Y. Ogata, and R. S. Matsuura. 1995. “The centenary of the Omori formula for a decay law of aftershock activity.” J. Phys. Earth 43 (1): 1–33. https://doi.org/10.4294/jpe1952.43.1.
Vives, E., et al. 2016. “Avalanche criticalities and elastic and calorimetric anomalies of the transition from cubic Cu-Al-Ni to a mixture of 18R and 2H structures.” Phys. Rev. B 94 (2): 024102. https://doi.org/10.1103/PhysRevB.94.024102.
Vu, C.-C., D. Amitrano, O. Plé, and J. Weiss. 2019. “Compressive failure as a critical transition: experimental evidence and mapping onto the Universality Class of depinning.” Phys. Rev. Lett. 122 (1): 015502. https://doi.org/10.1103/PhysRevLett.122.015502.
Wang, W., and M. R. Coop. 2018. “Breakage behaviour of sand particles in point-load compression.” Geotech. Lett. 8 (1): 61–65. https://doi.org/10.1680/jgele.17.00155.
Wang, X., Y. Jiao, R. Wang, M. Hu, Q. Meng, and F. Tan. 2011. “Engineering characteristics of the calcareous sand in Nansha Islands, South China Sea.” Eng. Geol. 120 (1–4): 40–47. https://doi.org/10.1016/j.enggeo.2011.03.011.
Weibull, W. 1951. “A statistical distribution function of wide applicability.” J. Appl. Mech. 18 (3): 293–297.
Weiss, J., et al. 2007. “Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experiments.” Phys. Rev. B 76 (22): 224110. https://doi.org/10.1103/PhysRevB.76.224110.
Xiao, Y., and H. Liu. 2017. “Elastoplastic constitutive model for rockfill materials considering particle breakage.” Int. J. Geomech. 17 (1): 04016041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000681.
Xiao, Y., H. Liu, Q. Chen, L. Long, and J. Xiang. 2017. “Evolution of particle breakage and volumetric deformation of binary granular soils under impact load.” Granular Matter 19 (4): 71. https://doi.org/10.1007/s10035-017-0756-z.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. II: Influence of particle breakage.” J. Geotech. Geoenviron. Eng. 140 (12): 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.
Xiao, Y., H. Liu, P. Xiao, and J. Xiang. 2016. “Fractal crushing of carbonate sands under impact loading.” Geotech. Lett. 6 (3): 199–204. https://doi.org/10.1680/jgele.16.00056.
Xiao, Y., Z. Sun, C. S. Desai, and M. Meng. 2019a. “Strength and surviving probability in grain crushing under acidic erosion and compression.” Int. J. Geomech. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001508.
Xiao, Y., Z. Yuan, J. Chu, H. Liu, J. Huang, S. N. Luo, S. Wang, and J. Lin. 2019b. “Particle breakage and energy dissipation of carbonate sands under quasi-static and dynamic compression.” Acta Geotechnica. https://doi.org/10.1007/s11440-11019-00768-z.
Yamamuro, J. A., P. A. Bopp, and P. V. Lade. 1996. “One-dimensional compression of sands at high pressures.” J. Geotech. Geoenviron. Eng. 122 (2): 147–154. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:2(147).
Yu, F. 2017. “Particle breakage and the drained shear behavior of sands.” Int. J. Geomech. 17 (8): 04017041. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000919.
Zapperi, S., A. Vespignani, and H. E. Stanley. 1997. “Plasticity and avalanche behaviour in microfracturing phenomena.” Nature 388 (6643): 658–660. https://doi.org/10.1038/41737.
Zhang, Y. D., G. Buscarnera, and I. Einav. 2016. “Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics.” Geotechnique 66 (2): 149–160. https://doi.org/10.1680/jgeot.15.P.119.
Zhao, B., J. Wang, M. R. Coop, G. Viggiani, and M. Jiang. 2015. “An investigation of single sand particle fracture using X-ray micro-tomography.” Geotechnique 65 (8): 625–641. https://doi.org/10.1680/geot.4.P.157.
Zheng, W., and D. Tannant. 2016. “Frac sand crushing characteristics and morphology changes under high compressive stress and implications for sand pack permeability.” Can. Geotech. J. 53 (9): 1412–1423. https://doi.org/10.1139/cgj-2016-0045.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 145Issue 9September 2019

History

Received: Oct 25, 2018
Accepted: May 15, 2019
Published online: Jul 11, 2019
Published in print: Sep 1, 2019
Discussion open until: Dec 11, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Yang Xiao, Ph.D., M.ASCE [email protected]
Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China; Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China (corresponding author). Email: [email protected]; [email protected]
Ph.D. Candidate, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
Xiang Jiang [email protected]
Researcher, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
T. Matthew Evans, Ph.D., A.M.ASCE [email protected]
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]
P.E.
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. ORCID: https://orcid.org/0000-0002-6265-9906. Email: [email protected]
Hanling Liu, Ph.D. [email protected]
Professor and Chair, School of Civil Engineering, Chongqing Univ., Chongqing 400450, China. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share