Technical Papers
Jul 15, 2019

Propagation and Attenuation of Statistically Stationary Ground Vibrations due to Human Activities

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 145, Issue 9

Abstract

Ground vibrations induced by human activities that can be considered a statistically stationary process can be represented by analytical solutions to Lamb’s problem. For a viscously damped half-space modeled as a Kelvin-Voigt solid, the attenuation is governed by radiation and an exponential law with an argument dependent on the soil’s damping ratio and Rayleigh wavelength. An estimator of the damping ratio is presented based on an energy analysis, and a field scale is introduced to filter near-field components from measurements. A spectral analysis of surface waves (SASW)–type test is used to determine the Rayleigh wave velocity through a frequency wavenumber transformation of the wave field, and the vibrations caused by a periodic excitation are used to determine the damping ratio. A comparison against a pseudo-attenuation power law is presented in terms of ground vibration prediction.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The first author wishes to thank the Facultad de Ingeniería, Universidad de Buenos Aires for financial support through the Peruilh Fellowship, the collaboration of members of the Laboratorio de Dinámica de Estructuras (LABDIN) in performing the field tests, the Universidad Tecnológica Nacional Facultad Regional General Pacheco for allowing the authors to carry out the tests on their campus, and two anonymous reviewers for their comments.

References

Abramowitz, M., and I. A. Stegun. 1972. Handbook of mathematical functions with formulas, graphs, and mathematical tables. 10th ed. Washington, DC: National Bureau of Standards Applied Mathematics, ERIC.
Aki, K., and P. G. Richards. 2002. Quantitative seismology. 2nd ed. Sausalito, CA: Univ. Science Books.
Auersch, L. 2006. “Ground vibration due to railway traffic–the calculation of the effects of moving static loads and their experimental verification.” J. Sound Vib. 293 (3–5): 599–610. https://doi.org/10.1016/j.jsv.2005.08.059.
Auersch, L., and S. Said. 2010. “Attenuation of ground vibrations due to different technical sources.” Earthquake Eng. Eng. Vib. 9 (3): 337–344. https://doi.org/10.1007/s11803-010-0018-0.
Badsar, S. A., M. Schevenels, W. Haegeman, and G. Degrande. 2010. “Determination of the material damping ratio in the soil from SASW tests using the half-power bandwidth method.” Geophys. J. Int. 182 (3): 1493–1508. https://doi.org/10.1111/j.1365-246X.2010.04690.x.
Balbi, M., J. M. Mussat, and R. D. Bertero. 2014. “Estudio analítico y experimental de las vibraciones en el terreno debidas a la actividad humana.” [In Spanish.] In Proc., Memorias XXIII Jornadas Argentinas de Ingeniería Estructural. Argentina: Asociación de Ingenieros Estructurales.
Bertero, R. D., A. N. Lehmann, J. M. Mussat, and S. F. Vaquero. 2012a. “Vibrations in neighborhood buildings due to rock concerts in stadiums.” J. Struct. Eng. 139 (11): 1981–1991. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000756.
Bertero, R. D., J. M. Mussat, K. A. Verri, and A. N. Lehmann. 2012b. “Vibraciones en edificios originadas por la hinca de tablestacas en centros urbanos.” [In Spanish.] In Proc., Memorias XXII Jornadas Argentinas de Ingeniería Estructural. Argentina: Asociación de Ingenieros Estructurales.
Boese, C. M., L. Wotherspoon, M. Alvarez, and P. Malin. 2015. “Analysis of anthropogenic and natural noise from multilevel borehole seismometers in an urban environment, Auckland, New Zealand.” Bull. Seismol. Soc. Am. 105 (1): 285–299. https://doi.org/10.1785/0120130288.
Bornitz, G. 1931. Über die Ausbreitung der von Großkolbenmaschinen erzeugten Bodenschwingungen in die Tiefe. [In German.] Berlin: Springer.
Brandenberg, S. J., J. Coe, R. L. Nigbor, and K. Tanksley. 2009. “Different approaches for estimating ground strains from pile driving vibrations at a buried archeological site.” J. Geotech. Geoenviron. 135 (8): 1101–1112. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000031.
Christensen, R. 1982. Theory of viscoelasticity: An introduction. New York: Academic Press.
Christian, J. T., J. M. Roesset, and C. S. Desai. 1977. “Two- and three-dimensional dynamic analyses.” Chap. 20 in Numerical methods in geotechnical engineering, edited by C. S. Desai and J. T. Christian, 683–718. New York: McGraw-Hill.
Codevilla, M., and A. Sfriso. 2011. “Actualización de la información geotécnica de los suelos de la Ciudad de Buenos Aires.” [In Spanish.] In Proc., 14th Pan-American Conf. on Soil Mechanics and Geotechnical Engineering. Richmond, Canada: Canadian Geotechnical Society.
Díaz, J., M. Ruiz, P. S. Sánchez-Pastor, and P. Romero. 2017. “Urban seismology: On the origin of earth vibrations within a city.” Sci. Rep. 7 (1): 15296. https://doi.org/10.1038/s41598-017-15499-y.
Dowding, C. H. 2000. Construction vibrations. Cleveland: International Society of Explosives Engineers.
Erlingsson, S. 1999. “Three-dimensional dynamic soil analysis of a live load in Ullevi Stadium.” Soil Dyn. Earthquake Eng. 18 (5): 373–386. https://doi.org/10.1016/S0267-7261(99)00006-8.
Erlingsson, S., and A. Bodare. 1996. “Live load induced vibrations in Ullevi Stadium: Dynamic soil analysis.” Soil Dyn. Earthquake Eng. 15 (3): 171–188. https://doi.org/10.1016/0267-7261(95)00041-0.
Ewins, D. J. 1984. Modal testing: Theory and practice. Letchworth, UK: Research Studies Press.
Forbriger, T. 2003. “Inversion of shallow-seismic wavefields. I: Wavefield transformation.” Geophys. J. Int. 153 (3): 719–734. https://doi.org/10.1046/j.1365-246X.2003.01929.x.
Foti, S., C. G. Lai, G. J. Rix, and C. Strobbia. 2015. Surface wave methods for near-surface site characterization. Boca Raton, FL: CRC Press.
Fung, Y. C., and P. Tong. 2001. Vol. 1 of Classical and computational solid mechanics. Singapore: World Scientific Publishing Company.
Graff, K. F. 1991. Wave motion in elastic solids. New York: Oxford University Press.
Grizi, A., A. Athanasopoulos-Zekkos, and R. D. Woods. 2016. “Ground vibration measurements near impact pile driving.” J. Geotech. Geoenviron. 142 (8): 04016035. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001499.
Gutowski, T. G., and C. L. Dym. 1976. “Propagation of ground vibration: A review.” J. Sound Vib. 49 (2): 179–193. https://doi.org/10.1016/0022-460X(76)90495-8.
Hao, H., and T. C. Ang. 1998. “Analytical modeling of traffic-induced ground vibrations.” J. Eng. Mech. 124 (8): 921–928. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(921).
Hunt, H. E. M. 1991. “Stochastic modelling of traffic-induced ground vibration.” J. Sound Vib. 144 (1): 53–70. https://doi.org/10.1016/0022-460X(91)90732-Y.
Jedele, L. P. 2005. “Energy-attenuation relationships from vibrations revisited.” GeoFrontiers 2005, 1–14. Reston, VA: ASCE.
Jones, S. 2004. Transportation- and construction-induced vibration guidance manual. Sacramento, CA: California Dept. of Transport, Noise, Vibration, and Hazardous Waste Management Office.
Kausel, E. 2012. “Lamb’s problem at its simplest.” Proc. R. Soc. A: Math. Phys. Eng. Sci. 469 (2149): 20120462. https://doi.org/10.1098/rspa.2012.0462.
Kim, D.-S., and J.-S. Lee. 2000. “Propagation and attenuation characteristics of various ground vibrations.” Soil Dyn. Earthquake Eng. 19 (2): 115–126. https://doi.org/10.1016/S0267-7261(00)00002-6.
Konon, W., and J. R. Schuring. 1985. “Vibration criteria for historic buildings.” J. Constr. Eng. Mange. 111 (3): 208–215. https://doi.org/10.1061/(ASCE)0733-9364(1985)111:3(208).
Kramer, S. L. 1996. Vol. 1 of Geotechnical earthquake engineering. Upper Saddle River, NJ: Prentice-Hall.
Lai, C. G. 1998. “Simultaneous inversion of Rayleigh phase velocity and attenuation for near-surface site characterization.” Ph.D. thesis, School of Civil and Environmental Engineering, Georgia Institute of Technology.
Lai, C. G., G. J. Rix, S. Foti, and V. Roma. 2002. “Simultaneous measurement and inversion of surface wave dispersion and attenuation curves.” Soil Dyn. Earthquake Eng. 22 (9–12): 923–930. https://doi.org/10.1016/S0267-7261(02)00116-1.
Lamb, H. 1904. “On the propagation of tremors over the surface of an elastic solid.” Philos. Trans. R. Soc. London 203 (359–371), 1–42. https://doi.org/10.1098/rsta.1904.0013.
Lo Presti, D. C. F., M. Jamiolkowski, O. Pallara, A. Cavallaro, and S. Pedroni. 1997. “Shear modulus and damping of soils.” Géotechnique 47 (3): 603–617. https://doi.org/10.1680/geot.1997.47.3.603.
Lysmer, J. 1973. “Modal damping and complex stiffness.” In Proc., Geotechnical Engineering. Berkeley, CA: Univ. of California.
Mustar, J. I., J. M. Mussat, and R. D. Bertero. 2014. “Determinación de la frecuencia natural y el factor de amortiguamiento de edificios de gran altura a partir de la vibración ambiente.” [In Spanish.] In Proc., Memorias XXIII Jornadas Argentinas de Ingeniería Estructural. Argentina: Asociación de Ingenieros Estructurales.
Nazarian, S., K. H. Stokoe II, and W. R. Hudson. 1983. “Use of spectral analysis of surface waves method for determination of moduli and thickness of pavement system.” Transp. Res. Rec. 930: 38–45.
Park, C. B., R. D. Miller, and J. Xia. 1999. “Multichannel analysis of surface waves.” Geophysics 64 (3): 800–808. https://doi.org/10.1190/1.1444590.
Ricker, N. 1943. “Further developments in the wavelet theory of seismogram structure.” Bull. Seismol. Soc. Am. 33 (3): 197–228.
Ricker, N. 1944. “Wavelet functions and their polynomials.” Geophysics 9 (3): 314–323. https://doi.org/10.1190/1.1445082.
Rimoldi, H. V. 2001. Carta geológico-geotécnica de la Ciudad de Buenos Aires. [In Spanish.]. Buenos Aires, Argentina: Serie Contribuciones Geotécnicas-Geología Ambiental, Servicio Geológico Minero Argentino (SEGEMAR).
Rinaldi, V., E. Abril, and J. Clariá. 2006. “Aspectos geotécnicos fundamentales de las formaciones del delta del Río Paraná y del estuario del Río de la Plata.” [In Spanish.] Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civ. 6 (2): 131–148.
Rix, G. J., C. G. Lai, and A. W. Spang, Jr. 2000. “In situ measurement of damping ratio using surface waves.” J. Geotech. Geoenviron. 126 (5): 472–480. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(472).
Sanchez-Salinero, I., J. M. Roesset, I. Stokoe, and H. Kenneth. 1986. Analytical studies of body wave propagation and attenuation. Austin, TX: Univ. of Texas at Austin.
Santamarina, J. C., and D. Fratta. 2005. Discrete signals and inverse problems: An introduction for engineers and scientists. West Sussex, UK: Wiley.
Santamarina, J. C., K. A. Klein, and M. A. Fam. 2001. Soils and waves. West Sussex, UK: Wiley.
Shibuya, S., T. Mitachi, F. Fukuda, and T. Degoshi. 1995. “Strain rate effects on shear modulus and damping of normally consolidated clay.” Geotech. Test. J. 18 (3): 365–375. https://doi.org/10.1520/GTJ11005J.
Sommerfeld, A. 1949. Vol. 1 of Partial differential equations in physics. New York: Academic Press.
Strobbia, C. 2003. “Surface wave methods: Acquisition, processing and inversion.” Ph.D. thesis, Dept. of Environment, Land and Infrastructure Engineering, Politecnico di Torino.
Verruijt, A. 2010. Vol. 24 of An introduction to soil dynamics. Theory and applications of transport in porous media. Dordrecht, Netherlands: Springer Science & Business Media.
Vucetic, M. 1994. “Cyclic threshold shear strains in soils.” J. Geotech. Eng. 120 (12): 2208–2228. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:12(2208).
Wang, Y. 2015. “Frequencies of the Ricker wavelet.” Geophysics 80 (2): A31–A37. https://doi.org/10.1190/geo2014-0441.1.
With, C., M. Bahrekazemi, and A. Bodare. 2006. “Validation of an empirical model for prediction of train-induced ground vibrations.” Soil Dyn. Earthquake Eng. 26 (11): 983–990. https://doi.org/10.1016/j.soildyn.2006.03.005.
Woods, R. D. 1968. Screening of surface waves in soils. Ann Arbor, MI: Univ. of Michigan.
Woods, R. D. 1997. Vol. 253 of Dynamic effects of pile installations on adjacent structures. Washington, DC: Transportation Research Board, National Academy Press.
Woods, R. D., and L. P. Jedele. 1985. “Energy–attenuation relationships from construction vibrations.” In Proc., Symp. Sponsored by the Geotechnical Engineering Division, edited by G. Gazetas and E. T. Selig, 229–246. Reston, VA: ASCE.
Yan, W.-M., G. Tham, and K. V. Yuen. 2013. “Reliability of empirical relation on the attenuation of blast-induced vibrations.” Int. J. Rock. Mech. Min. 59: 160–165. https://doi.org/10.1016/j.ijrmms.2012.12.005.
Yoon, S., and G. J. Rix. 2009. “Near-field effects on array-based surface wave methods with active sources.” J. Geotech. Geoenviron. 135 (3): 399–406. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:3(399).

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 145Issue 9September 2019

History

Received: Jun 15, 2018
Accepted: Feb 5, 2019
Published online: Jul 15, 2019
Published in print: Sep 1, 2019
Discussion open until: Dec 15, 2019

Permissions

Request permissions for this article.

Authors

Affiliations

Ph.D. Student, Peruilh Fellowship, Facultad de Ingeniería, Laboratorio de Dinámica de Estructuras, Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina; Instituto de Tecnologías y Ciencias de la Ingeniería, CONICET and Universidad de Buenos Aires, Buenos Aires C1127AAR, Argentina (corresponding author). ORCID: https://orcid.org/0000-0002-4844-0721. Email: [email protected]
Raúl D. Bertero, M.ASCE
Professor, Facultad de Ingeniería, Laboratorio de Dinámica de Estructuras, Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina; Instituto de Tecnologías y Ciencias de la Ingeniería, CONICET and Universidad de Buenos Aires, Buenos Aires C1127AAR, Argentina.
Pablo M. Barbieri
Student, Facultad de Ingeniería, Laboratorio de Dinámica de Estructuras, Universidad de Buenos Aires, Av. Las Heras 2214, Buenos Aires C1127AAR, Argentina; Instituto de Tecnologías y Ciencias de la Ingeniería, CONICET and Universidad de Buenos Aires, Buenos Aires C1127AAR, Argentina.

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share