Open access
Technical Papers
Nov 21, 2018

Effect of Particle Shape on Stress-Dilatancy Responses of Medium-Dense Sands

This article has a reply.
VIEW THE REPLY
This article has a reply.
VIEW THE REPLY
Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 145, Issue 2

Abstract

The effect of particle shape on the strength, dilatancy, and stress-dilatancy relationship was systematically investigated through a series of drained triaxial compression tests on sands mixed with angular and rounded glass beads of different proportions (0%, 25%, 50%, 75%, and 100%). A distinct overall regularity parameter was used to define the particle shape of these mixtures, which ranged from 0.844 to 0.971. The test results showed that all of the samples at an initial relative density of 0.6 exhibited strain-softening and volume-expansion behavior. It was found that the peak-state deviatoric stress, peak-state axial strain, and peak-state friction angle at a given confining pressure decreased with increasing overall regularity. The maximum differences in the peak-state deviator stress, peak-state axial strain, peak-state friction angle, excess friction angle, and maximum dilation angle due to changes in particle shape could be as much as 0.61 MPa, 5.4%, 8.6, 1.5, and 3° at a given confining pressure of 0.4 MPa. In addition, it was found that the slope of the relationship between the peak-state friction angle and maximum dilation angle was independent of the particle shape, whereas the intercept (i.e., the critical-state friction angle) was significantly influenced by the particle shape. A stress-dilatancy equation incorporating the effect of overall regularity was proposed and provided a good estimate of the observed response accounting for the different particle shapes investigated.

Formats available

You can view the full content in the following formats:

Acknowledgments

The authors are grateful to Professor John McCartney for helpful comments provided during preparation of this manuscript. The authors would like to acknowledge the financial support from the 111 Project (Grant No. B13024), the National Science Foundation of China (Grant Nos. 51509024, 51678094, and 51578096), the Fundamental Research Funds for the Central Universities (Grant No. 106112017CDJQJ208848), and Special Financial Grant from the China Postdoctoral Science Foundation (Grant No. 2017T100681). T. Matthew Evans was supported by the National Science Foundation (NSF) (Grant No. CMMI-1538460) during the course of this work. This support is gratefully acknowledged.

References

Altuhafi, F. N., M. R. Coop, and V. N. Georgiannou. 2016. “Effect of particle shape on the mechanical behavior of natural sands.” J. Geotech. Geoenviron. Eng. 142 (12): 04016071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001569.
ASTM. 2016a. Standard test methods for maximum index density and unit weight of soils using vibratory table. ASTM D4253. West Conshohocken, PA: ASTM.
ASTM. 2016b. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM D4254. West Conshohocken, PA: ASTM.
Been, K., and M. G. Jefferies. 1985. “A state parameter for sands.” Geotechnique 35 (2): 99–112. https://doi.org/10.1680/geot.1985.35.2.99.
Been, K., M. G. Jefferiest, and J. Hachey. 1991. “The critical state of sands.” Geotechnique 41 (3): 365–381. https://doi.org/10.1680/geot.1991.41.3.365.
Belkhatir, M., A. Arab, N. Della, and T. Schanz. 2012. “Experimental study of undrained shear strength of silty sand: Effect of fines and gradation.” Geotech. Geol. Eng. 30 (5): 1103–1118. https://doi.org/10.1007/s10706-012-9526-1.
Bolton, M. D. 1986. “The strength and dilatancy of sands.” Geotechnique 36 (1): 65–78. https://doi.org/10.1680/geot.1986.36.1.65.
Carraro, J. A. H., M. Prezzi, and R. Salgado. 2009. “Shear strength and stiffness of sands containing plastic or nonplastic fines.” J. Geotech. Geoenviron. Eng. 135 (9): 1167–1178. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167).
Charles, J. A., and K. S. Watts. 1980. “The influence of confining pressure on the shear strength of compacted rockfill.” Geotechnique 30 (4): 353–367. https://doi.org/10.1680/geot.1980.30.4.353.
Chiu, C. F., and X. J. Fu. 2008. “Interpreting undrained instability of mixed soils by equivalent intergranular state parameter.” Geotechnique 58 (9): 751–755. https://doi.org/10.1680/geot.2008.58.9.751.
Cho, G.-C., J. Dodds, and J. C. Santamarina. 2006. “Particle shape effects on packing density, stiffness, and strength: Natural and crushed sands.” J. Geotech. Geoenviron. Eng. 132 (5): 591–602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
Chu, J., W. K. Leong, W. L. Loke, and D. Wanatowski. 2012. “Instability of loose sand under drained conditions.” J. Geotech. Geoenviron. Eng. 138 (2): 207–216. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000574.
Chu, J., and D. Wanatowski. 2009. “Effect of loading mode on strain softening and instability behavior of sand in plane-strain tests.” J. Geotech. Geoenviron. Eng. 135 (1): 108–120. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:1(108).
Cui, D., W. Wu, W. Xiang, T. Doanh, Q. Chen, S. Wang, Q. Liu, and J. Wang. 2017. “Stick-slip behaviours of dry glass beads in triaxial compression.” Granul. Matter 19 (1): 1. https://doi.org/10.1007/s10035-016-0682-5.
Dai, B. B., J. Yang, and C. Y. Zhou. 2016. “Observed effects of interparticle friction and particle size on shear behavior of granular materials.” Int. J. Geomech. 16 (1): 04015011. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000520.
Endoh, S., Y. Kuga, H. Ohya, C. Ikeda, and H. Iwata. 1998. “Shape estimation of anisometric particles using size measurement techniques.” Part. Part. Syst. Charact. 15 (3): 145–149. https://doi.org/10.1002/(SICI)1521-4117(199817)15:3%3C145::AID-PPSC145%3E3.0.CO;2-B.
Fonseca, J., C. O’Sullivan, M. R. Coop, and P. D. Lee. 2012. “Non-invasive characterization of particle morphology of natural sands.” Soils Found. 52 (4): 712–722. https://doi.org/10.1016/j.sandf.2012.07.011.
Frossard, E., C. Dano, W. Hu, and P. Y. Hicher. 2012. “Rockfill shear strength evaluation: A rational method based on size effects.” Geotechnique 62 (5): 415–427. https://doi.org/10.1680/geot.10.P.079.
Frost, J. D., and J. Y. Park. 2003. “A critical assessment of the moist tamping technique.” Geotech. Test. J. 26 (1): 57–70. https://doi.org/10.1520/GTJ11108J.
Hagerty, M. M., D. R. Hite, C. R. Ullrich, and D. J. Hagerty. 1993. “One-dimensional high-pressure compression of granular media.” J. Geotech. Eng. 119 (1): 1–18. https://doi.org/10.1061/(ASCE)0733-9410(1993)119:1(1).
Hardin, B. O. 1985. “Crushing of soil particles.” J. Geotech. Eng. 111 (10): 1177–1192. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:10(1177).
Indraratna, B., D. Ionescu, and H. D. Christie. 1998. “Shear behavior of railway ballast based on large-scale triaxial tests.” J. Geotech. Geoenviron. Eng. 125 (5): 439–449. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:5(439).
Jennings, B. R., and K. Parslow. 1988. “Particle size measurement: The equivalent spherical diameter.” Proc. Royal Soc. London Ser. A Math. Phys. Eng. Sci. 419 (1856): 137–149. https://doi.org/10.1098/rspa.1988.0100.
Johnson, P. A., H. M. Savage, M. Knuth, J. Gomberg, and C. Marone. 2008. “Effects of acoustic waves on stick-slip in granular media and implications for earthquakes.” Nature 451 (7174): 57–60. https://doi.org/10.1038/nature06440.
Kokusho, T., T. Hara, and R. Hiraoka. 2004. “Undrained shear strength of granular soils with different particle gradations.” J. Geotech. Geoenviron. Eng. 130 (6): 621–629. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621).
Kuwajima, K., M. Hyodo, and A. F. L. Hyde. 2009. “Pile bearing capacity factors and soil crushabiity.” J. Geotech. Geoenviron. Eng. 135 (7): 901–913. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000057.
Ladd, R. S. 1974. “Specimen preparation and liquefaction of sands.” J. Geotech. Eng. Div. 100 (10): 1180–1184.
Ladd, R. S. 1978. “Preparing test specimens using undercompaction.” Geotech. Test. J. 1 (1): 16–23. https://doi.org/10.1520/GTJ10364J.
Lashkari, A. 2016. “Prediction of flow liquefaction instability of clean and silty sands.” Acta Geotech. 11 (5): 987–1014. https://doi.org/10.1007/s11440-015-0413-9.
Lee, C., H. S. Suh, B. Yoon, and T. S. Yun. 2017. “Particle shape effect on thermal conductivity and shear wave velocity in sands.” Acta Geotech. 12 (3): 615–625. https://doi.org/10.1007/s11440-017-0524-6.
Li, G., C. Ovalle, C. Dano, and P. Y. Hicher. 2013. “Influence of grain size distribution on critical state of granular materials.” In Constitutive modeling of geomaterials, 207–210. Berlin: Springer.
Ni, Q., T. S. Tan, G. R. Dasari, and D. W. Hight. 2004. “Contribution of fines to the compressive strength of mixed soils.” Geotechnique 54 (9): 561–569. https://doi.org/10.1680/geot.2004.54.9.561.
Oldecop, L. A., and E. E. Alonso. 2001. “A model for rockfill compressibility.” Geotechnique 51 (2): 127–139. https://doi.org/10.1680/geot.2001.51.2.127.
Ovalle, C., C. Dano, P.-Y. Hicher, and M. Cisternas. 2015. “Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio.” Can. Geotech. J. 52 (5): 587–598. https://doi.org/10.1139/cgj-2014-0079.
Ovalle, C., E. Frossard, C. Dano, W. Hu, S. Maiolino, and P.-Y. Hicher. 2014. “The effect of size on the strength of coarse rock aggregates and large rockfill samples through experimental data.” Acta Mech. 225 (8): 2199–2216. https://doi.org/10.1007/s00707-014-1127-z.
Papadopoulou, A., and T. Tika. 2008. “The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands.” Soils Found. 48 (5): 713–725. https://doi.org/10.3208/sandf.48.713.
Papadopoulou, A. I., and T. M. Tika. 2016. “The effect of fines plasticity on monotonic undrained shear strength and liquefaction resistance of sands.” Soil Dyn. Earthq. Eng. 88: 191–206. https://doi.org/10.1016/j.soildyn.2016.04.015.
Park, S.-S., and Y.-S. Kim. 2013. “Liquefaction resistance of sands containing plastic fines with different plasticity.” J. Geotech. Geoenviron. Eng. 13 (5): 825–830. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000806.
Polito, C. P., and J. R. Martin II. 2001. “Effects of nonplastic fines on the liquefaction resistance of solids.” J. Geotech. Geoenviron. Eng. 127 (5): 408–415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
Rahman, M., and S. R. Lo. 2014. “Undrained behavior of sand-fines mixtures and their state parameter.” J. Geotech. Geoenviron. Eng. 140 (7): 04014036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115.
Rousé, P. C., R. J. Fannin, and D. A. Shuttle. 2008. “Influence of roundness on the void ratio and strength of uniform sand.” Geotechnique 58 (3): 227–231. https://doi.org/10.1680/geot.2008.58.3.227.
Sadrekarimi, A., and S. M. Olson. 2012. “Effect of sample-preparation method on critical-state behavior of sands.” Geotech. Test. J. 35 (4): 548–562. https://doi.org/10.1520/GTJ104317.
Salgado, R., P. Bandini, and A. Karim. 2000. “Shear strength and stiffness of silty sand.” J. Geotech. Geoenviron. Eng. 126 (5): 451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451).
Schneider, C. A., W. S. Rasband, and K. W. Eliceiri. 2012. “NIH Image to ImageJ: 25 years of image analysis.” Nat. Methods 9 (7): 671–675. https://doi.org/10.1038/nmeth.2089.
Shin, H., and J. C. Santamarina. 2013. “Role of particle angularity on the mechanical behavior of granular mixtures.” J. Geotech. Geoenviron. Eng. 139 (2): 353–355. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000768.
Shipton, B., and M. R. Coop. 2012. “On the compression behaviour of reconstituted soils.” Soils Found. 52 (4): 668–681. https://doi.org/10.1016/j.sandf.2012.07.008.
Simpson, D. C., and T. M. Evans. 2016. “Behavioral thresholds in mixtures of sand and kaolinite clay.” J. Geotech. Geoenviron. Eng. 142 (2): 04015073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001391.
Strahler, A., A. W. Stuedlein, and P. W. Arduino. 2016. “Stress-strain response and dilatancy of sandy gravel in triaxial compression and plane strain.” J. Geotech. Geoenviron. Eng. 142 (4): 04015098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001435.
Strahler, A., A. W. Stuedlein, and P. W. Arduino. 2018. “Three-dimensional stress-strain response and stress-dilatancy of well-graded gravel.” Int. J. Geomech. 18 (4): 04018014. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001118.
Suh, H. S., K. Y. Kim, J. Lee, and T. S. Yun. 2017. “Quantification of bulk form and angularity of particle with correlation of shear strength and packing density in sands.” Eng. Geol. 220: 256–265. https://doi.org/10.1016/j.enggeo.2017.02.015.
Tarantino, A., and A. F. L. Hyde. 2005. “An experimental investigation of work dissipation in crushable materials.” Geotechnique 55 (8): 575–584. https://doi.org/10.1680/geot.2005.55.8.575.
Thevanayagam, S. 1998. “Effect of fines and confining stress on undrained shear strength of silty sands.” J. Geotech. Geoenviron. Eng. 124 (6): 479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479).
Tsomokos, A., and V. N. Georgiannou. 2010. “Effect of grain shape and angularity on the undrained response of fine sands.” Can. Geotech. J. 47 (5): 539–551. https://doi.org/10.1139/T09-121.
Vaid, Y. P., and S. Sasitharan. 1992. “The strength and dilatancy of sand.” Can. Geotech. J. 29 (3): 522–526. https://doi.org/10.1139/t92-058.
Vaid, Y. P., S. Sivathayalan, and D. Stedman. 1999. “Influence of specimen-reconstituting method on the undrained response of sand.” Geotech. Test. J. 22 (3): 187–195. https://doi.org/10.1520/GTJ11110J.
Varadarajan, A., K. G. Sharma, K. Venkatachalam, and A. K. Gupta. 2003. “Testing and modeling two rockfill materials.” J. Geotech. Geoenviron. Eng. 129 (3): 206–218. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:3(206).
Wadell, H. A. 1932. “Volume, shape, and roundness of rock particles.” J. Geol. 40 (5): 443–451. https://doi.org/10.1086/623964.
Wan, R. G., and P. J. Guo. 1998. “A simple constitutive model for granular soils: Modified stress-dilatancy approach.” Comput. Geotech. 22 (2): 109–133. https://doi.org/10.1016/S0266-352X(98)00004-4.
Wang, J., H. Zhang, S. Tang, and Y. Liang. 2013. “Effects of particle size distribution on shear strength of accumulation soil.” J. Geotech. Geoenviron. Eng. 139 (11): 1994–1997. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000931.
Wei, L. M., and J. Yang. 2014. “On the role of grain shape in static liquefaction of sand-fines mixtures.” Geotechnique 64 (9): 740–745. https://doi.org/10.1680/geot.14.T.013.
Wu, K., N. Abriak, F. Becquart, P. Pizette, S. Remond, and S. Liu. 2017. “Shear mechanical behavior of model materials samples by experimental triaxial tests: Case study of 4 mm diameter glass beads.” Granul. Matter 19 (4): 65–76. https://doi.org/10.1007/s10035-017-0753-2.
Xiao, Y., M. R. Coop, H. Liu, H. Liu, and J. S. Jiang. 2016a. “Transitional behaviors in well-graded coarse granular soils.” J. Geotech. Geoenviron. Eng. 142 (12): 06016018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001551.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014a. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. Part I: Influences of density and pressure.” J. Geotech. Geoenviron. Eng. 140 (12): 04014070. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001176.
Xiao, Y., H. Liu, Y. Chen, and J. Jiang. 2014b. “Strength and deformation of rockfill material based on large-scale triaxial compression tests. Part II: Influence of particle breakage.” J. Geotech. Geoenviron. Eng. 140 (12): 04014071. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001177.
Xiao, Y., H. Liu, C. S. Desai, Y. Sun, and H. Liu. 2016b. “Effect of intermediate principal-stress ratio on particle breakage of rockfill material.” J. Geotech. Geoenviron. Eng. 142 (4): 06015017. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001433.
Xiao, Y., H. L. Liu, B. W. Nan, and J. S. McCartney. 2018a. “Gradation-dependent thermal conductivity of sands.” J. Geotech. Geoenviron. Eng. 144 (9): 06018010. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001943.
Xiao, Y., A. M. Stuedlein, Q. Chen, H. Liu, and P. Liu. 2018b. “Stress-strain-strength response and ductility of gravels improved by polyurethane foam adhesive.” J. Geotech. Geoenviron. Eng. 144 (2): 04017108. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001812.
Xiao, Y., Y. Sun, F. Yin, H. Liu, and J. Xiang. 2017. “Constitutive modeling for transparent granular soils.” Int. J. Geomech. 17 (7): 04016150.https://doi.org/10.1061/(ASCE)GM.1943-5622.0000857.
Xu, M., E. Song, and J. Chen. 2012. “A large triaxial investigation of the stress-path-dependent behavior of compacted rockfill.” Acta Geotech. 7 (3): 167–175. https://doi.org/10.1007/s11440-012-0160-0.
Yamamoto, Y., M. Hyodo, and R. P. Orense. 2009. “Liquefaction resistance of sandy soils under partially drained condition.” J. Geotech. Geoenviron. Eng. 135 (8): 1032–1043. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000051.
Yang, J., and X. D. Luo. 2015. “Exploring the relationship between critical state and particle shape for granular materials.” J. Mech. Phys. Solids 84: 196–213. https://doi.org/10.1016/j.jmps.2015.08.001.
Yang, J., and X. D. Luo. 2017. “The critical state friction angle of granular materials: Does it depend on grading?” Acta Geotech. 12 (6): 1–13. https://doi.org/10.1007/s11440-017-0581-x.
Yang, J., and L. M. Wei. 2012. “Collapse of loose sand with the addition of fines: The role of particle shape.” Geotechnique 62 (12): 1111–1125. https://doi.org/10.1680/geot.11.P.062.
Yang, Z. X., J. Yang, and X. S. Li. 2008. “Quantifying and modelling fabric anisotropy of granular soils.” Geotechnique 58 (4): 237–248. https://doi.org/10.1680/geot.2008.58.4.237.
Zhang, J., S. Robert Lo, M. Rahman, and J. Yan. 2018. “Characterizing monotonic behavior of pond ash within critical state approach.” J. Geotech. Geoenviron. Eng. 144 (1): 04017100. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001798.
Zhang, Y. D., G. Buscarnera, and I. Einav. 2016. “Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics.” Geotechnique 66 (2): 149–160. https://doi.org/10.1680/jgeot.15.P.119.
Zhao, X., and T. M. Evans. 2009. “Discrete simulations of laboratory loading conditions.” Int. J. Geomech. 9 (4): 169–178. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(169).
Zheng, J., and R. D. Hryciw. 2016. “Index void ratios of sands from their intrinsic properties.” J. Geotech. Geoenviron. Eng. 142 (12): 06016019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001575.
Zhou, W., L. Yang, G. Ma, X. Chang, Z. Lai, and K. Xu. 2016. “DEM analysis of the size effects on the behavior of crushable granular materials.” Granul. Matter 18 (3): 64 https://doi.org/10.1007/s10035-016-0656-7.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 145Issue 2February 2019

History

Received: Dec 10, 2017
Accepted: Jul 18, 2018
Published online: Nov 21, 2018
Published in print: Feb 1, 2019
Discussion open until: Apr 21, 2019

Authors

Affiliations

Yang Xiao, Ph.D., M.ASCE [email protected]
Associate Professor, State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing Univ., Chongqing 400030, China; Researcher, Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing Univ., Chongqing 400045, China; Associate Professor, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China (corresponding author). Email: [email protected]; [email protected]
Leihang Long [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
T. Matthew Evans, Ph.D., A.M.ASCE [email protected]
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]
Master, School of Civil Engineering, Chongqing Univ., Chongqing 400045, China. Email: [email protected]
Hanlong Liu, Ph.D. [email protected]
Professor and Vice President, Chongqing Univ., Chongqing 400450, China. Email: [email protected]
Armin W. Stuedlein, Ph.D., M.ASCE [email protected]
P.E.
Associate Professor, School of Civil and Construction Engineering, Oregon State Univ., Corvallis, OR 97331. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share