Technical Notes
Jan 31, 2013

Liquefaction, Lateral Stress, Consolidation State, and Aging

Publication: Journal of Geotechnical and Geoenvironmental Engineering
Volume 139, Issue 10

Abstract

In 1986–1989, Jackson Lake Dam, Wyoming, was removed after standard penetration tests indicated that the foundation soil was subject to liquefaction. Part of a subsequent research program involved measuring lateral in situ stresses at various depths in the foundation soil by use of the Ko Stepped Blade, a device that introduces a stepwise lateral displacement of soil so contact pressures can be extrapolated to give the hypothetical pressure on a zero-thickness step. The foundation soil was cohesionless mix of alluvial and deltaic silts and sands with some sharp-edged gravel. The lateral stress measurements established relationships between the four topics in the title of this paper. A normal consolidation state, meaning that a soil is in equilibrium with its own weight, can be established when Ko is constant with depth and lateral effective stresses extrapolate to zero at the ground surface. On this basis, three stress zones were identified: (1) Based on limited data, an uppermost zone, to a depth of 4 m (13 ft) underneath the dam, was identified as being normally consolidated under the weight of the dam. This is as expected and probably occurred during construction. Underneath the upper zone was (2) a transition zone, 4 to 5.5 m (13 to18 ft) in depth, and under that (3) a lower zone, 5.5 to 10 m (18 to 33 ft) in depth. The lower zone was determined to be normally consolidated without the weight of the dam. Ko without the weight from the dam was determined to be 0.5, and lateral effective stresses extrapolate to zero at the predam ground surface. Note that the value of Ko was measured and not derived from empirical correlations. Nevertheless, it is consistent with normal consolidation and a friction angle of 30 degrees reported for this deposit. Despite having been characterized as cohesionless, the soil deep underneath the dam had resisted consolidation for over 60 years, and the depth to the underconsolidated layer is consistent with observations that liquefaction can be deep-seated. The existence of such a layer calls into question the use of a temporary surcharge for site preparation for cohesionless soils, or a reliance on measurements that settlement has stopped. A similar situation can be anticipated under existing structures such as dams and highway embankments that are located on the geologically young but historically old granular soil deposits of floodplains and deltas. The weight of the dam reduced Ko in the lower zone soil from 0.5 to 0.35. This can happen only if the soil has developed sufficient strength to resist consolidation and can be attributed to aging. Mohr circles drawn from the lateral stress measurements indicate a gain in cohesion of the order of 34 kPa (4.9 psi or 700 psf) from aging. The gain also may be explained by an increase in the friction angle from dilatancy attributed to cementation rims at grain contacts. The site was treated by deep dynamic compaction that increased Ko to 1.0, but with considerable variability. That value indicates a temporary liquid condition, and may have been preserved by seepage forces when pore water pressure supported the entire weight of the soil column. The replacement dam reduced the average Ko from 1.0 to about 0.5, which should be sufficient prevent future liquefaction. However, the cap on Ko of 1.0 during ramming can restrict the amount of additional load if the final Ko is to be no lower than the normal consolidation value.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

The Ko Stepped Blade was developed at Iowa State University under contracts with US DOT-FHWA and Soil Systems, Inc., Marietta, Georgia, Dr. Nat Fox, Principle Investigator; and USCE-WES and GeoSystems Engineering, Inc., Lenexa, Kansas, Dr. Glen Ferguson, Principle Investigator. Design of the blade was by the author in association with Don Eichner, Eichner Engineering, Ames, Iowa. Dr. Scott Mackiewicz suggested increasing the length of the thickest step to give an additional set of measurements. Field tests reported herein were conducted by Iowa State University faculty and students and by personnel of the U.S. Dept. of Interior Bureau of Reclamation. The author sincerely thanks reviewers and particularly Jeffrey Farrar, USBR, for valuable questions that raised the bar for this paper.

References

Farrar, J. A., Wirkus, K. E., and McClain, J. A. (1993). “Foundation treatment methods for the Jackson Lake Dam foundation.” Dam Foundation Engineering, 10th Annual USCOLD Lecture, U.S. Committee on Large Dams, New Orleans, 1–33.
Handy, R. L., and Ferguson, E. G. (1994). “Lithomorphic stresses and cleavage of loess.” Eng. Geol., 37(3–4), 235–245.
Handy, R. L., Mings, C., Retz, D., and Eichner, D. (1990). “Field experience with the back-pressured Ko Stepped Blade.” Transportation Research Record 1278, Transportation Research Board, Washington, DC, 115–134.
Handy, R. L., and White, D. J. (2006). “Stress zones near displacement piers. I. Plastic and liquefied behavior.” J. Geotech. Geoenviron. Eng., 132(1), 54–62.
Joshi, R. C., Gopal, A., Shenbaga, R., and Sanirag, H. W. (1995). “Effect of aging on the penetration resistance of sands.” Can. Geotech. J., 32(5), 767–782.
Leon, E., Gassman, S. L., and Talwari, P. (2006). “Accounting for soil aging when assessing liquefaction potential.” J. Geotech. Geoenviron. Eng., 132(3), 363–377.
Massarsch, K. R., Holtz, R. D., Holm, B. G., and Fredriksson, A. (1975). “Measurement of horizontal in situ stresses.” Proc., Conf. on In Situ Measurement of Soil Properties, Vol. 1, ASCE, New York, 266–286.
Schmertmann, J. H. (1975). “Measurement of in situ shear strength.” Proc, Conf. on In Situ Measurement of Soil Properties, Vol. 2, ASCE, New York, 57–175.
Schmertmann, J. H. (1991). “The mechanical aging of soils.” J. Geotech. Engrg., 117(9), 1288–1330.

Information & Authors

Information

Published In

Go to Journal of Geotechnical and Geoenvironmental Engineering
Journal of Geotechnical and Geoenvironmental Engineering
Volume 139Issue 10October 2013
Pages: 1808 - 1812

History

Received: Dec 10, 2011
Accepted: Jan 29, 2013
Published online: Jan 31, 2013
Published in print: Oct 1, 2013

Permissions

Request permissions for this article.

Authors

Affiliations

Richard L. Handy, M.ASCE [email protected]
Distinguished Professor Emeritus, Dept. of Civil, Construction and Environmental Engineering, Iowa State Univ., Ames, IA 50011. E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share