Technical Papers
Aug 30, 2022

Methodology to Determine Thermal Properties of Soils in Cold Regions from Heat-Pulse Migration Characteristics

Publication: International Journal of Geomechanics
Volume 22, Issue 11

Abstract

Accurate measurement of the thermal properties (viz., thermal conductivity, thermal resistivity, volumetric heat capacity, and thermal diffusivity) of soils in cold regions necessitates the development of techniques that are robust and efficient and that can incorporate different heat migration mechanisms under the influence of complex initial and boundary conditions. However, devices or the numerical procedures employed to determine them are scanty. In such a scenario, here, a methodology that facilitates the determination of thermal properties of soils in cold regions has been developed based on their heat-pulse migration characteristics (HPMC). To control the temperature of the soil specimen, a temperature-controlled environment chamber has been employed and HPMC was established by using the dual-probe heat-pulse sensor. Furthermore, a technique to estimate the thermal properties of the soil specimen by employing the measured HPMC, which facilitates solving an inverse transient heat conduction problem by using the conjugate gradient method, has been developed. Subsequently, the thermal properties of fine sands corresponding to different initial moisture contents and low temperatures have been determined and the results were compared with those predicted from the HPMC by utilizing interpretation techniques such as the single-point method and nonlinear fitting.

Get full access to this article

View all available purchase options and get full access to this article.

References

Abu-Hamdeh, N. H. 2001. “SW—soil and water: Measurement of the thermal conductivity of sandy loam and clay loam soils using single and dual probes.” J. Agric. Eng. Res. 80: 209–216. https://doi.org/10.1006/jaer.2001.0730.
Adam, D., and R. Markiewicz. 2009. “Energy from earth-coupled structures, foundations, tunnels and sewers.” Géotechnique 59: 229–236. https://doi.org/10.1680/geot.2009.59.3.229.
ASTM. 2014. Standard test methods for specific gravity of soil solids by water pycnometer. ASTM-D854. West Conshohocken, PA: ASTM.
ASTM. 2016. Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM-D4254. West Conshohocken, PA: ASTM.
ASTM. 2017. Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM-D6913. West Conshohocken, PA: ASTM.
Barry-Macaulay, D., A. Bouazza, and R. M. Singh. 2011. “Study of thermal properties of a basaltic clay.” In Geo-Frontiers 2011: Advances in geotechnical engineering, Geotechnical Special Publication 211, edited by J. Han and D. E. Alzamora, 480–487. Reston, VA: ASCE.
Bitteli, M., F. Ventura, G. S. Campbell, R. L. Snyder, F. Gallegati, and P. R. Pisa. 2008. “Coupling of heat, water vapor, and liquid water fluxes to compute evaporation in bare soils.” J. Hydrol. 362: 191–205. https://doi.org/10.1016/j.jhydrol.2008.08.014.
Brandl, H. 2006. “Energy foundations and other thermo-active ground structures.” Géotechnique 56: 81–122. https://doi.org/10.1680/geot.2006.56.2.81.
Bristow, K. L. 1998. “Measurement of thermal properties and water content of unsaturated sandy soil using dual-probe heat-pulse probes.” Agric. For. Meteorol. 89: 75–84. https://doi.org/10.1016/S0168-1923(97)00065-8.
Bristow, K. L., J. R. Bilskie, G. J. Kluitenberg, and R. Horton. 1995. “Comparison of techniques for extracting soil thermal properties from dual-probe heat-pulse data.” Soil Sci. 160 (1): 1–7. https://doi.org/10.1097/00010694-199507000-00001.
Bristow, K. L., G. J. Kluitenberg, and R. Horton. 1994. “Measurement of soil thermal properties with a dual-probe heat-pulse technique.” Soil Sci. Soc. Am. J. 58: 1288–1294. https://doi.org/10.2136/sssaj1994.03615995005800050002x.
Campbell, G. S., C. Calissendorff, and J. H. Williams. 1991. “Probe for measuring soil specific heat using a heat-pulse method.” Soil Sci. Soc. Am. J. 55: 291–293. https://doi.org/10.2136/sssaj1991.03615995005500010052x.
Clarke, B. G., A. Agab, and D. Nicholson. 2008. “Model specification to determine thermal conductivity of soils.” Proc. Inst. Civ. Eng. Geotech. Eng. 161: 161–168. https://doi.org/10.1680/geng.2008.161.3.161.
Côté, J., and J.-M. Konrad. 2005. “A generalized thermal conductivity model for soils and construction materials.” Can. Geotech. J. 42 (2): 443–458. https://doi.org/10.1139/t04-106.
Dangayach, S., D. N. Singh, P. Kumar, S. K. Dewri, B. Roy, C. Tandi, and J. Singh. 2015. “Thermal instability of gas hydrate bearing sediments: Some issues.” Mar. Pet. Geol. 67: 653–662. https://doi.org/10.1016/j.marpetgeo.2015.05.034.
Endo, A., and M. Hara. 2007. “Simultaneous measurement of water flux density vectors and thermal properties under drainage conditions in soils.” Paddy Water Environ. 5: 171–180. https://doi.org/10.1007/s10333-007-0081-y.
Flynn, D., D. Kurz, M. Alfaro, J. Graham, and L. U. Arenson. 2016. “Forecasting ground temperatures under a highway embankment on degrading permafrost.” J. Cold Reg. Eng. 30: 04016002. https://doi.org/10.1061/(ASCE)CR.1943-5495.0000106.
Gangadhara Rao, M., and D. N. Singh. 1999. “A generalized relationship to estimate thermal resistivity of soils.” Can. Geotech. J. 36 (4): 767–773. https://doi.org/10.1139/t99-037.
Ham, J. M., and E. J. Benson. 2004. “On the construction and calibration of dual-probe heat capacity sensors.” Soil Sci. Soc. Am. J. 68: 1185–1190. https://doi.org/10.2136/sssaj2004.1185.
He, H., M. F. Dyck, R. Horton, T. Ren, K. L. Bristow, J. Lv, and B. Si. 2018. “Development and application of the heat pulse method for soil physical measurements.” Rev. Geophys. 56: 567–620. https://doi.org/10.1029/2017RG000584.
He, Z., J. Teng, Z. Yang, L. Liang, H. Li, and S. Zhang. 2020. “An analysis of vapour transfer in unsaturated freezing soils.” Cold Reg. Sci. Technol. 169: 102914. https://doi.org/10.1016/j.coldregions.2019.102914.
Hopmans, J. W., J. Šimunek, and K. L. Bristow. 2002. “Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects: Estimation of soil thermal properties and water flux.” Water Resour. Res. 38: 7-1–7-14. https://doi.org/10.1029/2000WR000071.
Kamai, T., A. Tuli, G. J. Kluitenberg, and J. W. Hopmans. 2008. “Soil water flux density measurements near 1 cm·d−1 using an improved heat pulse probe design: Low water flux measurement.” Water Resour. Res. 44: 4. https://doi.org/10.1029/2008WR007036.
Kluitenberg, G. J., J. M. Ham, and K. L. Bristow. 1993. “Error analysis of the heat pulse method for measuring soil volumetric heat capacity.” Soil Sci. Soc. Am. J. 57: 1444–1451. https://doi.org/10.2136/sssaj1993.03615995005700060008x.
Kluitenberg, G. J., T. Kamai, J. A. Vrugt, and J. W. Hopmans. 2010. “Effect of probe deflection on dual-probe heat-pulse thermal conductivity measurements.” Soil Sci. Soc. Am. J. 74: 1537–1540. https://doi.org/10.2136/sssaj2010.0016N.
Knight, J. H., W. Jin, and G. J. Kluitenberg. 2007. “Sensitivity of the dual-probe heat-pulse method to spatial variations in heat capacity and water content.” Vadose Zone J. 6: 746–758. https://doi.org/10.2136/vzj2006.0170.
Kojima, Y., J. L. Heitman, K. Noborio, T. Ren, and R. Horton. 2018. “Sensitivity analysis of temperature changes for determining thermal properties of partially frozen soil with a dual probe heat pulse sensor.” Cold Reg. Sci. Technol. 151: 188–195. https://doi.org/10.1016/j.coldregions.2018.03.022.
Krishnaiah, S., and D. N. Singh. 2003. “Determination of influence of various parameters on thermal properties of soils.” Int. Commun. Heat Mass Transfer 30: 861–870. https://doi.org/10.1016/S0735-1933(03)00134-9.
Kurz, D., D. Flynn, M. Alfaro, L. U. Arenson, and J. Graham. 2020. “Seasonal deformations under a road embankment on degrading permafrost in Northern Canada.” Environ. Geotech. 7: 163–174. https://doi.org/10.1680/jenge.17.00036.
Lijith, K. P., B. R. C. Malagar, and D. N. Singh. 2019. “A comprehensive review on the geomechanical properties of gas hydrate bearing sediments.” Mar. Pet. Geol. 104: 270–285. https://doi.org/10.1016/j.marpetgeo.2019.03.024.
Lijith, K. P., V. Sharma, and D. N. Singh. 2021. “A methodology to establish freezing characteristics of partially saturated sands.” Cold Reg. Sci. Technol. 189: 103333. https://doi.org/10.1016/j.coldregions.2021.103333.
Li, H., Y. Lai, and L. Li. 2020. “Impact of hydro-thermal behaviour around a buried pipeline in cold regions.” Cold Reg. Sci. Technol. 171: 102961. https://doi.org/10.1016/j.coldregions.2019.102961.
Liu, G., Y. Lu, M. Wen, T. Ren, and R. Horton. 2020. “Advances in the heat-pulse technique: Improvements in measuring soil thermal properties.” Soil Sci. Soc. Am. J. 84: 1361–1370. https://doi.org/10.1002/saj2.20148.
Liu, G., and B. C. Si. 2011. “Single- and dual-probe heat pulse probe for determining thermal properties of dry soils.” Soil Sci. Soc. Am. J. 75: 787–794. https://doi.org/10.2136/sssaj2010.0241.
Liu, X., E. Liu, D. Zhang, G. Zhang, X. Yin, and B. Song. 2019. “Study on effect of coarse-grained content on the mechanical properties of frozen mixed soils.” Cold Reg. Sci. Technol. 158: 237–251. https://doi.org/10.1016/j.coldregions.2018.09.001.
Malagar, B. R. C., K. P. Lijith, and D. N. Singh. 2019. “Formation & dissociation of methane gas hydrates in sediments: A critical review.” J. Nat. Gas Sci. Eng. 65: 168–184. https://doi.org/10.1016/j.jngse.2019.03.005.
Mohebbi, F., and M. Sellier. 2016. “Parameter estimation in heat conduction using a two-dimensional inverse analysis.” Int. J. Comput. Methods Eng. Sci. Mech. 17: 274–287. https://doi.org/10.1080/15502287.2016.1204034.
Mondal, S., G. P. Padmakumar, V. Sharma, D. N. Singh, and M. S. Baghini. 2016. “A methodology to determine thermal conductivity of soils from flux measurement.” Geomech. Geoeng. 11: 73–85. https://doi.org/10.1080/17486025.2015.1020346.
Mortensen, A. P., J. W. Hopmans, Y. Mori, and J. Šimůnek. 2006. “Multi-functional heat pulse probe measurements of coupled vadose zone flow and transport.” Adv. Water Resour. 29: 250–267. https://doi.org/10.1016/j.advwatres.2005.03.017.
Moya, R. E. S., A. T. Prata, and J. A. B. C. Neto. 1999. “Experimental analysis of unsteady heat and moisture transfer around a heated cylinder buried into a porous medium.” Int. J. Heat Mass Transfer 42: 2187–2198. https://doi.org/10.1016/S0017-9310(98)00322-6.
Naidu, A. D., and D. N. Singh. 2004. “Field probe for measuring thermal resistivity of soils.” J. Geotech. Geoenviron. Eng. 130: 213–216. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:2(213).
Ochsner, T. E., and J. M. Baker. 2008. “In situ monitoring of soil thermal properties and heat flux during freezing and thawing.” Soil Sci. Soc. Am. J. 72: 1025–1032. https://doi.org/10.2136/sssaj2007.0283.
Oswell, J. M. 2011. “Pipelines in permafrost: Geotechnical issues and lessons.” Can. Geotech. J. 48: 1412–1431. https://doi.org/10.1139/t11-045.
Overduin, P. P., D. L. Kane, and W. K. P. van Loon. 2006. “Measuring thermal conductivity in freezing and thawing soil using the soil temperature response to heating.” Cold Reg. Sci. Technol. 45: 8–22. https://doi.org/10.1016/j.coldregions.2005.12.003.
Ozisik, M. N., and H. R. B. Orlande. 2000. Inverse heat transfer: Fundamentals and applications. New York: Taylor & Francis.
Palaparthy, V. S., S. Mondal, D. N. Singh, M. S. Baghini, and G. K. Ananthasuresh. 2018. “Effect of spatial variations and desiccation cracks on the DPHP and MPHP sensors.” Sens. Actuators, A 279: 638–648. https://doi.org/10.1016/j.sna.2018.06.056.
Putkonen, J. 2003. “Determination of frozen soil thermal properties by heated needle probe.” Permafrost Periglacial Processes 14: 343–347. https://doi.org/10.1002/ppp.465.
Ren, T., G. J. Kluitenberg, and R. Horton. 2000. “Determining soil water flux and pore water velocity by a heat pulse technique.” Soil Sci. Soc. Am. J. 64: 552–560. https://doi.org/10.2136/sssaj2000.642552x.
Ren, T., T. E. Ochsner, and R. Horton. 2003. “Development of thermo-time domain reflectometry for vadose zone measurements.” Vadose Zone J. 2: 544–551. https://doi.org/10.2136/vzj2003.5440.
Saaly, M., P. Maghoul, M. Kavgic, and D. Polyzois. 2019. “Performance analysis of a proposed geothermal pile system for heating and cooling energy demand for a building in cold regions.” Sustainable Cities Soc. 45: 669–682. https://doi.org/10.1016/j.scs.2018.12.014.
Shiozawa, S., and G. S. Campbell. 1990. “Soil thermal conductivity.” Remote Sens. Rev. 5: 301–310. https://doi.org/10.1080/02757259009532137.
Singh, D. N., and K. Devid. 2000. “Generalized relationships for estimating soil thermal resistivity.” Exp. Therm Fluid Sci. 22: 133–143. https://doi.org/10.1016/S0894-1777(00)00020-0.
Singh, D. N., K. Devid, and A. Dali Naidu. 2003. “Fabrication of thermal probes for estimation of soil thermal resistivity.” J. Test. Eval. 31: 11167. https://doi.org/10.1520/JTE12358J.
Spaans, E. J. A., and J. M. Baker. 1996. “The soil freezing characteristic: Its measurement and similarity to the soil moisture characteristic.” Soil Sci. Soc. Am. J. 60: 13–19. https://doi.org/10.2136/sssaj1996.03615995006000010005x.
Steeves, J. T., S. L. Barbour, G. Ferguson, and S. K. Carey. 2019. “Heat transfer within frozen slopes in subarctic Yukon, Canada.” Environ. Geotech. 6: 420–429. https://doi.org/10.1680/jenge.15.00058.
Sturm, M. 2002. “Thermal conductivity and heat transfer through the snow on the ice of the Beaufort Sea.” J. Geophys. Res. 107: 8043. https://doi.org/10.1029/2000JC000409.
Waite, W. F., B. J. deMartin, S. H. Kirby, J. Pinkston, and C. D. Ruppel. 2002. “Thermal conductivity measurements in porous mixtures of methane hydrate and quartz sand: Thermal conductivity in hydrate+sand .” Geophys. Res. Lett. 29: 82-1–82-4. https://doi.org/10.1029/2002GL015988.
Waite, W. F., L. Y. Gilbert, W. J. Winters, and D. H. Mason. 2006. “Estimating thermal diffusivity and specific heat from needle probe thermal conductivity data.” Rev. Sci. Instrum. 77: 044904. https://doi.org/10.1063/1.2194481.
Welch, S. M., G. J. Kluitenberg, and K. L. Bristow. 1996. “Rapid numerical estimation of soil thermal properties for a broad class of heat-pulse emitter geometries.” Meas. Sci. Technol. 7: 932–938. https://doi.org/10.1088/0957-0233/7/6/012.
Wu, D., X. Zhou, and X. Jiang. 2018. “Water and salt migration with phase change in saline soil during freezing and thawing processes.” Groundwater 56: 742–752. https://doi.org/10.1111/gwat.12605.
Xu, X., Y. Lai, Y. Dong, and J. Qi. 2011. “Laboratory investigation on strength and deformation characteristics of ice-saturated frozen sandy soil.” Cold Reg. Sci. Technol. 69: 98–104. https://doi.org/10.1016/j.coldregions.2011.07.005.
Yang, C., and S. B. Jones. 2009. “INV-WATFLX, a code for simultaneous estimation of soil properties and planar vector water flux from fully or partly functioning needles of a penta-needle heat-pulse probe.” Comput. Geosci. 35: 2250–2258. https://doi.org/10.1016/j.cageo.2009.04.005.
Yang, Y., Y. Lai, and X. Chang. 2010. “Laboratory and theoretical investigations on the deformation and strength behaviors of artificial frozen soil.” Cold Reg. Sci. Technol. 64: 39–45. https://doi.org/10.1016/j.coldregions.2010.07.003.
Zhang, N., X. Yu, A. Pradhan, and A. J. Puppala. 2015. “Thermal conductivity of quartz sands by thermo-time domain reflectometry probe and model prediction.” J. Mater. Civ. Eng. 27: 04015059. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001332.
Zhang, Y., S. K. Carey, and W. L. Quinton. 2008. “Evaluation of the algorithms and parameterizations for ground thawing and freezing simulation in permafrost regions.” J. Geophys. Res. 113: D17116. https://doi.org/10.1029/2007JD009343.
Zhao, Y., and B. Si. 2019. “Thermal properties of sandy and peat soils under unfrozen and frozen conditions.” Soil Tillage Res. 189: 64–72. https://doi.org/10.1016/j.still.2018.12.026.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 11November 2022

History

Received: Jul 11, 2021
Accepted: May 4, 2022
Published online: Aug 30, 2022
Published in print: Nov 1, 2022
Discussion open until: Jan 30, 2023

Permissions

Request permissions for this article.

Authors

Affiliations

Formerly, Post-Doctoral Fellow, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. ORCID: https://orcid.org/0000-0002-5701-7108. Email: [email protected]
Research Scholar, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India. ORCID: https://orcid.org/0000-0001-7346-6846. Email: [email protected]
Devendra Narain Singh, Ph.D., F.ASCE [email protected]
Professor, Dept. of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India (corresponding author). Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Laboratory Studies on the Influence of Freezing Methodology on the Shear Strength Behavior of Artificially Frozen Clays, International Journal of Geomechanics, 10.1061/IJGNAI.GMENG-8599, 23, 8, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share