Technical Papers
Jul 4, 2022

Shear Strength Behavior of Fiber-Reinforced Soil: Experimental Investigation and Prediction Model

Publication: International Journal of Geomechanics
Volume 22, Issue 9

Abstract

This paper presents a prediction model for the shear strength of fiber-reinforced soil. A series of triaxial compression tests were first conducted to investigate the influences of fiber content and fiber length on the shear strength behavior of fiber-reinforced soil under different confining pressures. Experimental results on the stress–strain relationship, shear strength improvement ratio, shear strength parameters, and reinforcement mechanism are presented and discussed. Results indicate that the shear strength of fiber-reinforced soil increases significantly with increasing fiber content, but there exists an optimal value for strength improvement. The fiber content and fiber length have little influence on the friction angle of fiber-reinforced soil, while the apparent cohesion increases significantly with increasing fiber content and fiber length. Based on the experimental data, a prediction model was proposed for the shear strength of fiber-reinforced soil using the concepts of equivalent apparent cohesion and equivalent normal stress. The model can capture the decrease in shear strength improvement effect due to excessive fibers and can predict the shear strength of fiber-reinforced soil with good accuracy using fiber parameters and shear strength parameters of unreinforced soil.

Get full access to this article

View all available purchase options and get full access to this article.

Acknowledgments

This research is supported by the National Natural Science Foundation of China (Grant No. 52078392). The authors gratefully acknowledge the financial assistance.

Notation

The following symbols are used in this paper:
ca
apparent cohesion of reinforced soil (kPa);
ca,eq
equivalent apparent cohesion of reinforced soil (kPa);
c0
cohesion of unreinforced soil (kPa);
Df
fiber diameter (mm);
f
friction of fibers-soil particles;
Lf
fiber length (mm);
mf
fiber mass (g);
N
contact normal stress of fiber-soil particles;
P
tension on fibers;
Rs
shear strength improvement ratio;
V
sample volume (cm3);
Vf
fiber volume (cm3);
w
natural moisture content;
wl
liquid limit;
wop
optimal moisture content;
wp
plastic limit;
αf
fiber distribution coefficient;
α1, α2
fitting parameter;
δth
optimal value of the χf · ηf;
ɛ1
axial strain;
ηf
aspect ratio of fiber;
μ1, μ2
fitting parameter;
ρdmax
maximum dry density of soil (g·cm−3);
ρf
density of fiber (g·cm−3);
σn
normal stress of reinforced soil (kPa);
σn,eq
equivalent normal stress of reinforced soil (kPa);
σn,0
normal stress of unreinforced soil (kPa);
σx
horizontal normal stress;
σz
vertical normal stress;
σ1
major principal stress or axial stress (kPa);
σ3
minor principal stress or confining pressure (kPa);
τ
shear strength (kPa);
φ
friction angle of reinforced soil (°);
φ0
friction angle of unreinforced soil (°); and
χf
volumetric fiber content.

References

Abuel-Maaty, A. E. 2010. “Evaluation of characteristics of subgrade stabilized with random polypropylene short fiber.” J. Eng. Appl. Sci. 57 (3): 167–183.
Al-Refeai, T. O. 1991. “Behavior of granular soils reinforced with discrete randomly oriented inclusions.” Geotext. Geomembr. 10 (4): 319–333. https://doi.org/10.1016/0266-1144(91)90009-L.
Chegenizadeh, A., and H. Nikraz. 2012. “Performance of fiber reinforced clayey sand composite.” Front. Struct. Civ. Eng. 6 (2): 147–152. https://doi.org/10.1007/s11709-012-0158-6.
Chen, C., G. Zhang, J. G. Zornberg, A. M. Morsy, and J. Huang. 2020. “Interface bond behavior of tensioned glass fiber-reinforced polymer (gfrp) tendons embedded in cemented soils.” Constr. Build. Mater. 263: 120132. https://doi.org/10.1016/j.conbuildmat.2020.120132.
Consoli, N. C., M. D. T. Casagrande, and M. R. Coop. 2007a. “Performance of a fibre-reinforced sand at large shear strains.” Géotechnique 57 (9): 751–756. https://doi.org/10.1680/geot.2007.57.9.751.
Consoli, N. C., M. D. T. Casagrande, P. D. M. Prietto, and A. Thome. 2003. “Plate load test on fiber-reinforced soil.” J. Geotech. Geoenviron. Eng. 129 (10): 951–955. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:10(951).
Consoli, N. C., K. S. Heineck, M. D. T. Casagrande, and M. R. Coop. 2007b. “Shear strength behavior of fiber-reinforced sand considering triaxial tests under distinct stress paths.” J. Geotech. Geoenviron. Eng. 133 (11): 1466–1469. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:11(1466).
Consoli, N. C., P. D. M. Prietto, and L. A. Ulbrich. 1998. “Influence of fiber and cement addition on behavior of sandy soil.” J. Geotech. Geoenviron. Eng. 124 (12): 1211–1214. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:12(1211).
Diambra, A., E. Ibraim, D. Muir Wood, and A. R. Russell. 2010. “Fibre reinforced sands: Experiments and modelling.” Geotext. Geomembr. 28 (3): 238–250. https://doi.org/10.1016/j.geotexmem.2009.09.010.
Divya, P. V., B. V. S. Viswanadham, and J. P. Gourc. 2014. “Evaluation of tensile strength-strain characteristics of fiber-reinforced soil through laboratory tests.” J. Mater. Civ. Eng. 26 (1): 14–23. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000772.
Falorca, I. M. C. F. G., and M. I. M. Pinto. 2011. “Effect of short, randomly distributed polypropylene microfibres on shear strength behaviour of soils.” Geosynth. Int. 18 (1): 2–11. https://doi.org/10.1680/gein.2011.18.1.2.
Festugato, L., N. C. Consoli, and A. Fourie. 2015. “Cyclic shear behaviour of fibre-reinforced mine tailings.” Geosynth. Int. 22: 196–206. https://doi.org/10.1680/gein.15.00005.
Festugato, L., E. Menger, F. Benezra, E. A. Kipper, and N. C. Consoli. 2017. “Fibre-reinforced cemented soils compressive and tensile strength assessment as a function of filament length.” Geotext. Geomembr. 45: 77–82. https://doi.org/10.1016/j.geotexmem.2016.09.001.
Hejazi, S. M., M. Sheikhzadeh, S. M. Abtahi, and A. Zadhoush. 2012. “A simple review of soil reinforcement by using natural and synthetic fibers.” Constr. Build. Mater. 30: 100–116. https://doi.org/10.1016/j.conbuildmat.2011.11.045.
Jiang, H., Y. Cai, and J. Liu. 2010. “Engineering properties of soils reinforced by short discrete polypropylene fiber.” J. Mater. Civ. Eng. 22 (12): 1315–1322. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000129.
Jie, Y. X., and G. X. Li. 1999. “A study on calculation method of texsoil.” China Civ. Eng. J. 32 (5): 51–55.
Krishnaswamy, N. R., and N. Thomas Isaac. 1994. “Liquefaction potential of reinforced sand.” Geotext. Geomembr. 13 (1): 23–41. https://doi.org/10.1016/0266-1144(94)90055-8.
Li, C., and J. G. Zornberg. 2013. “Mobilization of reinforcement forces in fiber-reinforced soil.” J. Geotech. Geoenviron. Eng. 139 (1): 107–115. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000745.
Li, C., and J. G. Zornberg. 2019. “Shear strength behavior of soils reinforced with weak fibers.” J. Geotech. Geoenviron. Eng. 145 (9): 06019006. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002109.
Li, G. X., L. Chen, J. Q. Zheng, and Y. X. Jie. 1995. “Experimental study on fiber-reinforced cohesive soil.” J. Hydraul. Eng. 6: 31–36.
Lirer, S., A. Flora, and N. C. Consoli. 2011. “On the strength of fibre-reinforced soils.” Soils Found. 51 (4): 601–609. https://doi.org/10.3208/sandf.51.601.
Liu, C., Y. Lv, X. Yu, and X. Wu. 2020. “Effects of freeze–thaw cycles on the unconfined compressive strength of straw fiber-reinforced soil.” Geotext. Geomembr. 48 (4): 581–590. https://doi.org/10.1016/j.geotexmem.2020.03.004.
Liu, J.-l., T.-s. Hou, Y.-s. Luo, and Y.-x. Cui. 2019. “Experimental study on unconsolidated undrained shear strength characteristics of synthetic cotton fiber reinforced soil.” Geotech. Geol. Eng. 38: 1773–1783. https://doi.org/10.1007/s10706-019-01129-z.
Liu, J., G. Wang, T. Kamai, F. Zhang, J. Yang, and B. Shi. 2011. “Static liquefaction behavior of saturated fiber-reinforced sand in undrained ring-shear tests.” Geotext. Geomembr. 29 (5): 462–471. https://doi.org/10.1016/j.geotexmem.2011.03.002.
Lovisa, J., S. K. Shukla, and N. Sivakugan. 2010. “Shear strength of randomly distributed moist fibre-reinforced sand.” Geosynth. Int. 17: 100–106. https://doi.org/10.1680/gein.2010.17.2.100.
Michalowski, R. L., and J. Čermák. 2003. “Triaxial compression of sand reinforced with fibers.” J. Geotech. Geoenviron. Eng. 129 (2): 125–136. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:2(125).
Mirzababaei, M., V. Anggraini, and A. Haque. 2020. “X-ray computed tomography imaging of fibre-reinforced clay subjected to triaxial loading.” Geosynth. Int. 27 (6): 635–645. https://doi.org/10.1680/jgein.20.00024.
Mirzababaei, M., M. Mohamed, A. Arulrajah, S. Horpibulsuk, and V. Anggraini. 2018. “Practical approach to predict the shear strength of fibre-reinforced clay.” Geosynth. Int. 25 (1): 50–66. https://doi.org/10.1680/jgein.17.00033.
Mohamed, A. E. M. K. 2013. “Improvement of swelling clay properties using hay fibers.” Constr. Build. Mater. 38: 242–247. https://doi.org/10.1016/j.conbuildmat.2012.08.031.
Muntohar, A. S., A. Widianti, E. Hartono, and W. Diana. 2013. “Engineering properties of silty soil stabilized with lime and rice husk Ash and reinforced with waste plastic fiber.” J. Mater. Civ. Eng. 25 (9): 1260–1270. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000659.
Nataraj, M. S., and K. L. McManis. 1997. “Strength and deformation properties of soils reinforced with fibrillated fibers.” Geosynth. Int. 4 (1): 65–79. https://doi.org/10.1680/gein.4.0089.
Park, T., and S. Tan. 2005. “Enhanced performance of reinforced soil walls by the inclusion of short fiber.” Geotext. Geomembr. 23 (4): 348–361. https://doi.org/10.1016/j.geotexmem.2004.12.002.
Prabakar, J., and R. S. Sridhar. 2002. “Effect of random inclusion of sisal fibre on strength behaviour of soil.” Constr. Build. Mater. 16 (2): 123–131. https://doi.org/10.1016/S0950-0618(02)00008-9.
Ranjan, G., R. M. Vasan, and H. D. Charan. 1996. “Probabilistic analysis of randomly distributed fiber-reinforced soil.” J. Geotech. Eng. 122 (6): 419–426. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:6(419).
Santoni, R. L., J. S. Tingle, and S. L. Webster. 2001. “Engineering properties of sand–fiber mixtures for road construction.” J. Geotech. Geoenviron. Eng. 127 (3): 258–268. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(258).
Soriano, I., E. Ibraim, E. Andò, A. Diambra, T. Laurencin, P. Moro, and G. Viggiani. 2017. “3D fibre architecture of fibre-reinforced sand.” Granular Matter 19 (4): 75. https://doi.org/10.1007/s10035-017-0760-3.
Tang, C., B. Shi, W. Gao, F. Chen, and Y. Cai. 2007. “Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil.” Geotext. Geomembr. 25: 194–202. https://doi.org/10.1016/j.geotexmem.2006.11.002.
Tang, C.-S., Q. Cheng, P. Wang, H.-S. Wang, Y. Wang, and H. I. Inyang. 2020. “Hydro-mechanical behavior of fiber reinforced dredged sludge.” Eng. Geol. 276: 105779. https://doi.org/10.1016/j.enggeo.2020.105779.
Tang, C.-S., B. Shi, and L.-Z. Zhao. 2010. “Interfacial shear strength of fiber reinforced soil.” Geotext. Geomembr. 28: 54–62. https://doi.org/10.1016/j.geotexmem.2009.10.001.
Temel, Y., and S. Omer. 2003. “A study on shear strength of sands reinforced with randomly distributed discrete fibers.” Geotext. Geomembr. 21 (2): 103–110. https://doi.org/10.1016/S0266-1144(03)00003-7.
Wang, Y.-X., P.-P. Guo, W.-X. Ren, B.-X. Yuan, H.-P. Yuan, Y.-L. Zhao, S.-B. Shan, and P. Cao. 2017. “Laboratory investigation on strength characteristics of expansive soil treated with Jute fiber reinforcement.” Int. J. Geomech. 17 (11): 04017101. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000998.
Webster, S. L., and R. L. Santoni. 1997. Contingency airfield and road construction using geosynthetic fiber stabilization of sands. Tech. Rep. GL-97-4. Vicksburg, MS: US Army Corps of Engineers Waterways Experiment Station.
Wei, L., S. X. Chai, H. Y. Zhang, and Q. Shi. 2018. “Mechanical properties of soil reinforced with both lime and four kinds of fiber.” Constr. Build. Mater. 172: 300–308. https://doi.org/10.1016/j.conbuildmat.2018.03.248.
Xu, D. S., J. M. Yan, and Q. Liu. 2021. “Behavior of discrete fiber-reinforced sandy soil in large-scale simple shear tests.” Geosynth. Int. 28 (6): 598–608. https://doi.org/10.1680/jgein.21.00007.
Yetimoglu, T., and O. Salbas. 2003. “A study on shear strength of sands reinforced with randomly distributed discrete fibers.” Geotext. Geomembr. 21 (2): 103–110. https://doi.org/10.1016/S0266-1144(03)00003-7.
Zhang, X. J., K. J. Zhou, and J. X. Zhou. 1998. “Experimental study on dynamic properties of cohesive soil reinforced with fibres.” China J. Geotech. Eng. 20 (3): 45–49.
Zhang, Y. M., X. D. Zhang, and H. R. Zhang. 2005. “Test research of geotechnique textile soil reinforcement mechanism and engineering application.” Rock Soil Mech. 26 (8): 1323–1326.
Zheng, Y., J. S. McCartney, P. B. Shing, and P. J. Fox. 2018. “Transverse shaking table test of a half-scale geosynthetic reinforced soil bridge abutment.” Geosynth. Int. 25 (6): 582–598. https://doi.org/10.1680/jgein.18.00019.
Zheng, Y., J. S. McCartney, P. B. Shing, and P. J. Fox. 2019. “Physical model tests of half-scale geosynthetic reinforced soil bridge abutments. II: Dynamic loading.” J. Geotech. Geoenviron. Eng. 145 (11): 04019095. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002158.
Zhu, H.-H., C.-C. Zhang, C.-S. Tang, B. Shi, and B.-J. Wang. 2014. “Modeling the pullout behavior of short fiber in reinforced soil.” Geotext. Geomembr. 42 (4): 329–338. https://doi.org/10.1016/j.geotexmem.2014.05.005.
Zhu, S. A. 1994. Application of geosynthetics. Beijing: Beijing Science and Technology Press.
Zornberg, J. G. 2002. “Discrete framework for limit equilibrium analysis of fibre-reinforced soil.” Géotechnique 52 (8): 593–604. https://doi.org/10.1680/geot.2002.52.8.593.

Information & Authors

Information

Published In

Go to International Journal of Geomechanics
International Journal of Geomechanics
Volume 22Issue 9September 2022

History

Received: Nov 19, 2021
Accepted: Apr 3, 2022
Published online: Jul 4, 2022
Published in print: Sep 1, 2022
Discussion open until: Dec 4, 2022

Permissions

Request permissions for this article.

Authors

Affiliations

Futang Zhao [email protected]
Ph.D. Candidate, School of Civil Engineering, Wuhan Univ., Wuhan, Hubei 430072, China. Email: [email protected]
Professor, School of Civil Engineering, Wuhan Univ., Wuhan, Hubei 430072, China (corresponding author). ORCID: https://orcid.org/0000-0001-9038-4113. Email: [email protected]

Metrics & Citations

Metrics

Citations

Download citation

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

  • Study on the uniaxial compression constitutive relationship of modified yellow mud from minority dwelling in western Sichuan, China, REVIEWS ON ADVANCED MATERIALS SCIENCE, 10.1515/rams-2022-0291, 62, 1, (2023).

View Options

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Get Access

Access content

Please select your options to get access

Log in/Register Log in via your institution (Shibboleth)
ASCE Members: Please log in to see member pricing

Purchase

Save for later Information on ASCE Library Cards
ASCE Library Cards let you download journal articles, proceedings papers, and available book chapters across the entire ASCE Library platform. ASCE Library Cards remain active for 24 months or until all downloads are used. Note: This content will be debited as one download at time of checkout.

Terms of Use: ASCE Library Cards are for individual, personal use only. Reselling, republishing, or forwarding the materials to libraries or reading rooms is prohibited.
ASCE Library Card (5 downloads)
$105.00
Add to cart
ASCE Library Card (20 downloads)
$280.00
Add to cart
Buy Single Article
$35.00
Add to cart

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share with email

Email a colleague

Share